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Abstract

We classify the extreme 2-homogeneous polynomials on R2 with the hexagonal norm
of weight 1

2
. As applications, using its extreme points with the Krein-Milman Theorem,

we explicitly compute the polarization and unconditional constants of P(2R2
h( 1

2
)
).

1. Introduction

According to the Krein-Milman Theorem, every nonempty convex set in
a Banach space is fully described by the set of its extreme points. We re-
call that if C is a convex set in a Banach space, a point e ∈ C is said to be
extreme if x, y ∈ C and e = λx+ (1− λ)y for some 0 < λ < 1 implies that

x = y = e. Note that if e ∈ C such that x, y ∈ C and e = 1
2(x+ y) implies

that x = y = e, then e is an extreme point of C. Indeed, without loss of gen-
erality, we may assume that 0 < λ ≤ 1

2 . Then, 2λx+ (1− 2λ)y ∈ C and it

follows that e = λx+ (1− λ)y = 1
2 [2λx+ (1− 2λ)y] + 1

2y, which shows that
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2λx+(1−2λ)y = y, hence, x = y. Let n ∈ N.We write BE for the closed unit
ball of a real Banach space E. We denote by extBE the sets of all the extreme
points of BE . We denote by L(nE) the Banach space of all continuous n-
linear forms on E endowed with the norm �T� = sup�xk�=1 |T (x1, · · · , xn)|.
A n-linear form T is symmetric if T (x1, . . . , xn) = T (xσ(1), . . . , xσ(n)) for ev-

ery permutation σ on {1, 2, . . . , n}. We denote by Ls(
nE) the Banach space

of all continuous symmetric n-linear forms on E. A mapping P : E → R is a
continuous n-homogeneous polynomial if there exists a unique T ∈ Ls(

nE)
such that P (x) = T (x, · · · , x) for every x ∈ E. In this case it is convenient

to write T = P̌ . We denote by P(nE) the Banach space of all continu-
ous n-homogeneous polynomials from E into R endowed with the norm
�P� = sup�x�=1 |P (x)|. It is well-known that

�P� ≤ �P̌� ≤ nn

n!
�P� (∀P ∈ P(nE)).

For more details about the theory of multilinear mappings and polynomials
on a Banach space, we refer to [7].

In [33], the nth polarization constant of E is defined by

cpol(n : E) = inf{M > 0 : �P̌� ≤ M�P� for every P ∈ P(nE)}.

Let Xα denote the monomial xα1
1 · · ·xαm

m , where X = (x1, . . . , xm) ∈ Rm and
α = (α1, . . . ,αm) with αk ∈ N ∪ {0}, 1 ≤ k ≤ m. If P (X) =

�
|α|≤n aαX

α is

a polynomial of degree n on Rm, we define its modulus |P | by |P |(X) =�
|α|≤n |aα|Xα. We define the nth unconditional constant of Rm by

cunc(n : Rm) = inf{M > 0 : �|P |� ≤ M�P� for every P ∈ P(nRm}.

In 1998, Choi et al. [2, 3] characterized the extreme points of the unit
ball of P(2l21) and P(2l22). In 2007, Kim [15] classified the exposed 2-

homogeneous polynomials on P(2l2p) (1 ≤ p ≤ ∞). Kim [17, 19, 23] classified

the extreme, exposed, smooth points of the unit ball of P(2d∗(1, w)2), where

d∗(1, w)2 = R2 with an octagonal norm �(x, y)�w = max{|x|, |y|, |x|+|y|
1+w }. In

2009, Kim [16] classified the extreme, exposed, smooth points of the unit ball
of Ls(

2l2∞). Kim [18, 20, 21] also classified the extreme, exposed, smooth
points of the unit balls of Ls(

2d∗(1, w)2) and L(2d∗(1, w)2). Gamez-Merino
et al. [8] classified the extreme points of the unit ball of P(2�) and, using
its extreme points, compute the polarization and unconditional constants of
P(2�), where � is the unit square of vertices (0, 0), (0, 1), (1, 0), (1, 1). We
refer to ([1–6], [8–38]) and references therein for some recent work about
extremal properties of multilinear mappings and homogeneous polynomials
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on some classical Banach spaces. By the Krein-Milman Theorem, a convex
function (like a polynomial norm, for instance) defined on a convex set (like
the unit ball of a finite dimensional polynomial space) attains its maximum
at one extreme point of the convex set.

We will denote by P (x, y) = ax2 + by2 + cxy and P̌ ((x1, y1), (x2, y2)) =
ax1x2 + by1y2 +

c
2(x1y2 + x2y1) a 2-homogeneous polynomial and its corre-

sponding symmetric bilinear form on a real Banach space of dimension 2,
respectively. Let 0 < w < 1 be fixed. We denote by R2

h(w) the space R2

endowed with the hexagonal norm

�(x, y)�h(w) := max{|y|, |x|+ (1− w)|y|}.

Very recently, Kim [24] classified the extreme and exposed points of the unit
ball of Ls(

2R2
h(w)).

In this paper, we classify the extreme points of the unit ball of P(2R2
h( 1

2
)
).

As applications, using its extreme points and the results of [24] with the

Krein-Milman Theorem, we explicitly compute cpol(2 : R2
h( 1

2
)
) = 5

4 and

cunc(2 : R2
h( 1

2
)
) = 3

2 .

2. The extreme points of the unit ball of P(2R2
h( 1

2
)
)

For P (x, y) = ax2 + by2 + cxy ∈ P(2R2
h( 1

2
)
), we present an explicit for-

mula of �P� in terms of its coefficients a, b, c as follows.

Theorem 2.1. Let P (x, y) = ax2+by2+cxy ∈ P(2R2
h( 1

2
)
) with a ≥ 0, c ≥

0 and a2 + b2 + c2 �= 0. Then:
Case 1: c < a
If a ≤ 4b, then

�P� = max{a, b, 1
4
a+ b+

1

2
c,
4ab− c2

4a
,

4ab− c2

2c+ a+ 4b
,

4ab− c2

−2c+ a+ 4b
}

= max{a, 1
4
a+ b+

1

2
c}.

If a > 4b, then �P� = max{a, |b|, |14a+ b|+ 1
2c,

|c2−4ab|
4a }.

Case 2: c ≥ a

If a ≤ 4b, then �P� = max{a, 14a+ b+ 1
2c,

|c2−4ab|
2c+a+4b}.

If a > 4b, then �P� = max{a, |b|, |14a+ b|+ 1
2c,

c2−4ab
2c−a−4b}.
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Proof. Note that

�P� = max{ max
0≤x≤ 1

2

|ax2 ± cx+ b|, max
1
2
≤x≤1

|(a+ 4b+ 2c)x2 − 2(4b+ c)x+ 4b|,

max
1
2
≤x≤1

|(a+ 4b− 2c)x2 − 2(4b− c)x+ 4b|}.

Let

I1 := max
0≤x≤ 1

2

|ax2 + cx+ b|,

I2 := max
0≤x≤ 1

2

|ax2 − cx+ b|,

J1 := max
1
2
≤x≤1

|(a+ 4b+ 2c)x2 − 2(4b+ c)x+ 4b|,

J2 := max
1
2
≤x≤1

|(a+ 4b− 2c)x2 − 2(4b− c)x+ 4b|.

Obviously,

I1 = max{|b|, |1
4
a+ b+

1

2
c|}.

Note that if c < a, then

I2 = max{|b|, |1
4
a+ b− 1

2
c|, |c

2 − 4ab|
4|a| }

and if c ≥ a, then

I2 = max{|b|, |1
4
a+ b− 1

2
c|}.

Let’s compute J1. Note that

1

2
≤ c+ 4b

2c+ a+ 4b
≤ 1 if and only if a ≤ 4b.

Hence, if a ≤ 4b, then

J1 = max{|a|, |1
4
a+ b− 1

2
c|, |c2 − 4ab|

|2c+ a+ 4b|}

and if a > 4b, then

J1 = max{|a|, |1
4
a+ b− 1

2
c|}.
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Let’s compute J2. Note that

1
2 ≤ c−4b

2c−a−4b ≤ 1 if and only if (4b ≤ a ≤ c, 2c− a− 4b �= 0) or

(c ≤ a ≤ 4b, 2c− a− 4b �= 0).

Hence, if (4b ≤ a ≤ c, 2c− a− 4b �= 0) or (c ≤ a ≤ 4b, 2c− a− 4b �= 0), then

J2 = max{|a|, |1
4
a+ b+

1

2
c|, |c2 − 4ab|

|2c− a− 4b|}

and otherwise,

J2 = max{|a|, |1
4
a+ b+

1

2
c|}.

Since �P� = max{I1, I2, J1, J2}, it completes the proof. �

Remark. Note that if �P� = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 2.

We are now in a position to prove the main result of this paper.

Theorem 2.2.

extBP(2R2

h( 12 )
) = {±y2,±(x2 + 1

4y
2 ± xy),±(x2 + 3

4y
2),

±[x2 + ( c
2

4 − 1)y2 ± cxy] (0 ≤ c ≤ 1),

±[ax2 + (a+4
√
1−a

4 − 1)y2 ± (a+ 2
√
1− a)xy] (0 ≤ a ≤ 1)}.

Proof. Let P (x, y) = ax2+ by2+ cxy ∈ extBP(2R2

h( 12 )
) with a ≥ 0, c ≥ 0.

Note that if b = 1, then a = c = 0. Indeed, since

1 = �P� ≥ |P (
1

2
, 1)| = 1

4
a+ 1 +

1

2
c,

we have a = c = 0. Hence, if b = 1, then P = y2.
Claim: y2 ∈ extBP(2R2

h( 12 )
).

Let

Q1(x, y) = �x2 + γy2 + δxy

and

Q2(x, y) = −�x2 + γy2 − δxy
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be such that �Qj� = 1 and y2 = 1
2(Q1 +Q2) for all j = 1, 2 and for some

�,γ, δ ∈ R. Obviously, γ = 1. Without loss of generality, we may assume that
δ ≥ 0. If � < 0, then

1 = �Q2� ≥ |Q2(
1

2
,−1)| = 1

4
|�|+ 1 +

1

2
δ > 1,

which is a contradiction. Therefore, � ≥ 0. Since

1 = �Q1� ≥ |Q1(
1

2
, 1)| = 1

4
�+ 1 +

1

2
δ,

we have � = 0 = δ. Therefore, y2 = Q1 = Q2. Hence, y2 ∈ extBP(2R2

h( 12 )
).

Suppose that −1 ≤ b < 1.
(Case 1): a = 1, b = −1.
We claim that the only extreme point of the unit ball in this case is

P = x2 − y2. Since

1 = �P� ≥ |P (
1

2
,−1)| = 3

4
+

1

2
c,

we have c ≤ 1
2 . By Theorem 2.1 (case 1),

1 = �P� ≥ c2 + 4

4
,

which shows that c = 0. Hence, if a = 1, b = −1, then P = x2 − y2.
Let

Q1(x, y) = x2 − y2 + δxy

and

Q2(x, y) = x2 − y2 − δxy

be such that �Qj� = 1 and x2− y2 = 1
2(Q1+Q2) for all j = 1, 2 and for some

δ ≥ 0. Since

1 = �Q1� ≥ |Q1(
1

2
,−1)| = 3

4
+

1

2
δ,

we have δ ≤ 1
2 . By Theorem 2.1 (case 1),

1 = �Q1� ≥ 4 + δ2

4
,

which implies that δ = 0.



368 S. G. KIM

(Case 2): a = 1 and −1 < b < 1.
We claim that the only extreme point of the unit ball in this case is

P = x2 +
1

4
y2 + xy or P = x2 +

3

4
y2 or

P = x2 + (
c2

4
− 1)y2 + cxy for 0 < c ≤ 1.

First, assume that c > 1. If 1 ≤ 4b, then

1 = �P� ≥ |P (
1

2
, 1)| = 1

4
+ b+

1

2
c > 1,

which is impossible. Hence, 4b < 1. By Theorem 2.1 (case 2),

1 = �P� = max{1, |b|, |1
4
+ b|+ 1

2
c,

c2 − 4b

2c− 1− 4b
}.

Since

c2 − 4b

2c− 1− 4b
≤ 1,

we have c = 1, which is contradiction. Therefore, c ≤ 1. If 1 ≤ 4b, by Theo-
rem 2.1 (case 1),

1 = �P� = max{1, b, 1
4
+ b+

1

2
c}.

Hence,

1

4
≤ b ≤ 3

4
.

We will show that
1

4
+ b+

1

2
c = 1.

Assume that 1
4 + b+ 1

2c < 1. If 1
4 < b ≤ 3

4 , we define

Q1(x, y) = x2 + (b+
1

n
)y2 + (c− 2

n
)xy

and

Q2(x, y) = x2 + (b− 1

n
)y2 + (c+

2

n
)xy,
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where

0 < b− 1

n
< b+

1

n
< 1, 0 < c− 2

n
< c+

2

n
< 1 for some n ∈ N.

By Theorem 2.1, �Qj� = 1 for j = 1, 2 and P = 1
2(Q1 +Q2), which shows

that P is not extreme, reducing thus a contradiction. If b = 1
4 , we define

Q1(x, y) = x2 + by2 + (c− 2

n
)xy

and

Q2(x, y) = x2 + by2 + (c+
2

n
)xy,

where

0 < c− 2

n
< c+

2

n
< 1,

1

4
+ b+

1

2
c+

1

n
< 1 for some n ∈ N.

By Theorem 2.1, �Qj� = 1 for j = 1, 2 and P = 1
2(Q1 +Q2), which shows

that P is not extreme, reducing thus a contradiction. Therefore,

1

4
+ b+

1

2
c = 1.

We have shown that

P = x2 + by2 + (
3

2
− 2b)xy for

1

4
≤ b ≤ 3

4
.

Note that b = 1
4 or 3

4 . Indeed, suppose that

1

4
< b <

3

4
.

Let 1
4 < b1 < b < b2 <

3
4 be such that b = 1

2(b1 + b2). Let

Qj = x2 + bjy
2 + (

3

2
− 2bj)xy for j = 1, 2.

By Theorem 2.1, �Qj� = 1 for j = 1, 2 and P = 1
2(Q1 +Q2), which shows

that P is not extreme. Hence, if 1 ≤ 4b, then

P = x2 +
1

4
y2 + xy or P = x2 +

3

4
y2.
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Claim: x2 + 1
4y

2 + xy ∈ extBP(2R2

h( 12 )
).

Let

Q1(x, y) = x2 + (
1

4
+ �)y2 + (1 + δ)xy

and

Q2(x, y) = x2 + (
1

4
− �)y2 + (1− δ)xy

be such that �Qj� = 1 for all j = 1, 2 and for some �, δ ∈ R. Without loss of
generality, we may assume that δ ≥ 0. If � > 0, then

1 = �Q1� ≥ |Q1(
1

2
, 1)| = |1

4
+ (

1

4
+ �) +

1

2
(1 + δ)| > 1,

which is a contradiction. Hence,

� ≤ 0.

By Theorem 2.1 (case 2),

1 = �Q1� ≥ 4(14 + �)− (1 + δ)2

1 + 4(14 + �)− 2(1 + δ)
,

which implies that δ = 0. Since

1 = �Q2� = |Q2(
1

2
, 1)| ≥ |1

4
+ (

1

4
− �) +

1

2
| = 1 + |�|,

which implies � = 0.
Claim: x2 + 3

4y
2 ∈ extBP(2R2

h( 12 )
).

Let

Q1(x, y) = x2 + (
3

4
+ �)y2 + δxy

and

Q2(x, y) = x2 + (
3

4
− �)y2 − δxy

be such that �Qj� = 1 for all j = 1, 2 and for some �, δ ∈ R. Without loss of

generality, we may assume that δ ≥ 0. Since |Qj(
1
2 , 1)| ≤ 1 for j = 1, 2, we

have

� = −1

2
δ.
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Let

Q3(x, y) = x2 + (
3

4
+

1

2
δ)y2 + δxy.

It follows that

�Q3� = sup
�(x,y)�

h( 12 )
=1

|Q3(x,−y)| = sup
�(x,y)�

h( 12 )
=1

|Q2(x, y)| = �Q2�.

Since

1 = �Q2� = �Q3� ≥ |Q3(
1

2
, 1)| = 1 + δ,

we have δ = 0 = �.
Suppose that 4b < 1. By Theorem 2.1 (case 1),

1 = �P� = max{1, |b|, |1
4
+ b|+ 1

2
c,
|c2 − 4b|

4
}.

Using the fact that P is extreme, we will show that

c > 0 and
|c2 − 4b|

4
= 1.

Otherwise.

c = 0 or
|c2 − 4b|

4
< 1.

If c = 0 then

P = x2 + by2 for − 1 < b <
1

4
,

which is not extreme. That is a contradiction. Hence c > 0. Assume that
|c2−4b|

4 < 1. If c = 1, then

P = x2 + by2 + xy for − 3

4
< b <

1

4
,

which is not extreme. That is a contradiction. Therefore,

0 < c < 1 and
1

4
+ b+

1

2
c < 1.

Let n ∈ N such that

b+
1

n
<

1

4
, 0 < c− 2

n
< c+

2

n
< 1,

1

4
+ b+

1

2
c+

1

n
< 1,
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|c2 − 4b+ 4
n2 (1± 3n)|
4

< 1.

Let

Q1(x, y) = x2 + (b+
1

n
)y2 + (c+

2

n
)xy

and

Q2(x, y) = x2 + (b− 1

n
)y2 + (c− 2

n
)xy.

By Theorem 2.1 (case 1), �Qj� = 1 for j = 1, 2. Since P = 1
2(Q1 +Q2), P is

not extreme, which is a contradiction. Hence,

|c2 − 4b|
4

= 1.

Therefore, if 4b < 1, then

P = x2 + (
c2

4
− 1)y2 + cxy for 0 < c ≤ 1.

Claim: x2 + ( c
2

4 − 1)y2 + cxy ∈ extBP(2R2

h( 12 )
) for 0 < c ≤ 1.

Let 0 < c < 1 and let

Q1(x, y) = x2 + (
c2

4
− 1 + δ)y2 + (c+ γ)xy

and

Q2(x, y) = x2 + (
c2

4
− 1− δ)y2 + (c− γ)xy

be such that �Qj� = 1 for all j = 1, 2 and for some δ, γ ∈ R. Since

|c
2

4
− 1± δ| ≤ 1,

we have

|δ| < 1

4
and − 1 ≤ c2

4
− 1− |δ| ≤ c2

4
− 1 + |δ| < −1

2
.

Without loss of generality, we may assume that γ ≥ 0. We will show that

c+ γ < 1.
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Assume that 1 ≤ c+ γ ≤ 2. By Theorem 2.1 (case 2),

1 = �Q1� ≥ (c+ γ)2 − 4( c
2

4 − 1 + δ)

2(c+ γ)− 1− 4( c
2

4 − 1 + δ)
,

which implies that c+ γ = 1. Hence,

Q1(x, y) = x2 + (
c2

4
− 1 + δ)y2 + xy

and

Q2(x, y) = x2 + (
c2

4
− 1− δ)y2 + (2c− 1)xy.

By Theorem 2.1 (case 1), it follows that, for j = 1, 2,

1 = �Qj� ≥ |1
4
+ (

c2

4
− 1± δ)|+ 1

2

= −(
1

4
+ (

c2

4
− 1± δ)) +

1

2
,

which shows that

3− c2

4
± δ ≤ 1

2
.

Hence,

c2 ≥ 1,

which is a contradiction because 0 < c < 1. Therefore,

c+ γ < 1.

By Theorem 2.1 (case 1),

1 = �Q1� ≥ 4 + 2cγ + γ2 − 4δ

4
,

which implies that

(∗) 4 + 2cγ + γ2 − 4δ ≤ 4.

Since

|c− γ| ≤ c+ γ < 1,
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by Theorem 2.1 (case 1),

1 = �Q2� = �x2 + (
c2

4
− 1− δ)y2 + (c− γ)xy� ≥ 4− 2cγ + γ2 + 4δ

4
,

which implies that

(∗∗) 4− 2cγ + γ2 + 4δ ≤ 4.

Adding (∗) and (∗∗), we have 8+ 2γ2 ≤ 8, hence, γ = 0. By (∗) and (∗∗), we
have

4− 4δ ≤ 4, 4 + 4δ ≤ 4,

so δ = 0. Therefore,

x2 + (
c2

4
− 1)y2 + cxy ∈ extBP(2R2

h( 12 )
) for 0 < c < 1.

We will show that if c = 1, then

P = x2 − 3

4
y2 + xy

is extreme. Let

Q1(x, y) = x2 + (−3

4
+ �)y2 + (1 + δ)xy

and

Q2(x, y) = x2 + (−3

4
− �)y2 + (1− δ)xy

be such that �Qj� = 1 for all j = 1, 2 and for some �, δ ∈ R. Since

|− 3

4
± �| ≤ 1,

we have

|�| ≤ 1

4
.

Hence,

−1 ≤ −3

4
− |�| ≤ −3

4
+ |�| ≤ −1

2
.
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Without loss of generality, we may assume that δ ≥ 0. By Theorem 2.1 (case
2),

1 = �Q1� ≥ 4 + 2δ − 4�+ δ2

4 + 2δ − 4�
,

which implies that δ = 0. Since, for j = 1, 2,

1 = �Qj� ≥ |1
4
+ (−3

4
± �)|+ 1

2
= 1 + |�|,

which shows that � = 0. Hence,

P = x2 − 3

4
y2 + xy ∈ extBP(2R2

h( 12 )
).

(Case 3): 0 ≤ a < 1 and b = −1.
If c ≥ a, then

1 = �P� ≥ |1
4
a− 1|+ 1

2
c,

which shows that

c ≤ 1

2
a.

Hence, a = 0 = c and P = −y2, which is extreme. Suppose that c < a. By
Theorem 2.1 (case 1),

1 = �P� = max{a, 1, |1
4
a− 1|+ 1

2
c,
c2 + 4a

4a
}.

Hence

c2 + 4a

4a
≤ 1,

which implies that c = 0. Hence

P = ax2 − y2 for 0 < a < 1,

which is a contradiction because P is extreme. Indeed, let 0 < a1 < a < a2 <
1 be such that a = 1

2(a1 + a2). Define

Qj(x, y) = ajx
2 − y2 for j = 1, 2.

Then �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that P is not extreme.

(Case 4): 0 ≤ a < 1 and −1 < b < 1
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If −1 < b ≤ 0, we claim that the only extreme point of the unit ball is

P = 2xy.

Assume that c < a. By Theorem 2.1 (case 1),

1 = �P� = max{a, |b|, |1
4
a+ b|+ 1

2
c,
c2 − 4ab

4a
}.

Since P is extreme, we claim that

1 = |1
4
a+ b|+ 1

2
c =

c2 − 4ab

4a
.

Assume that

(|1
4
a+ b|+ 1

2
c = 1,

c2 − 4ab

4a
< 1) or (|1

4
a+ b|+ 1

2
c < 1,

c2 − 4ab

4a
= 1).

We will derive a contradiction. Let

|1
4
a+ b|+ 1

2
c = 1,

c2 − 4ab

4a
< 1.

Note that

0 < c < 1 and
1

4
a+ b < 0.

Let n ∈ N be such that

1

4
a+ b+

5

4n
< 0, 0 < c− 5

2n
< c+

5

2n
< a− 1

n
< a+

1

n
< 1,

−1 < b− 1

n
< b+

1

n
< 1, a− 1

n
> 4(b+

1

n
),

(c± 5
2n)

2 − 4(a± 1
n)(b± 1

n)

4(a± 1
n)

< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

n
)y2 + (c+

5

2n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

n
)y2 + (c− 5

2n
)xy.
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By Theorem 2.1 (case 1), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction.
Let next

|1
4
a+ b|+ 1

2
c < 1,

c2 − 4ab

4a
= 1.

Then c > 0. Let � > 0 be such that

0 < a− � < a+ � < 1,−1 < b− (
1 + b

a
)� < b+ (

1 + b

a
)� < 1,

0 < c− 4(1 + b)

c
� < c+

4(1 + b)

c
� < a− �, 4(b+ (

1 + b

a
)�) < a− �,

|1
4
((a± �) + (b± (

1 + b

a
)�)|+ 1

2
(c± 4(1 + b)

c
�) < 1.

Let

Q1(x, y) = (a+ �)x2 + (b+ (
1 + b

a
)�)y2 + (c+

4(1 + b)

c
�)xy

and

Q2(x, y) = (a− �)x2 + (b− (
1 + b

a
)�)y2 + (c− 4(1 + b)

c
�)xy.

From the fact that

c2 − 4ab

4a
= 1,

we deduce that

(c+ 4(1+b)
c �)2 − 4(a+ �)(b+ (1+b

a )�)

4(a+ �)
= 1

=
(c− 4(1+b)

c �)2 − 4(a− �)(b− (1+b
a )�)

4(a− �)
,

hence, by Theorem 2.1 (case 1), �Qj� = 1 and P = 1
2(Q1 +Q2), which im-

plies that P is not extreme, reaching thus a contradiction. Therefore, we
should have

1 = |1
4
a+ b|+ 1

2
c =

c2 − 4ab

4a
.

Hence, 1
4a+ b < 0 and c = a, which is a contradiction. Therefore, we have

c ≥ a.
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By Theorem 2.1 (case 2),

1 = �P� = max{a, |b|, |1
4
a+ b|+ 1

2
c,

c2 − 4ab

2c− a− 4b
}.

Since P is extreme, we claim that

(∗ ∗ ∗) 1 = |1
4
a+ b|+ 1

2
c =

c2 − 4ab

2c− a− 4b
.

Assume that

(|1
4
a+ b|+ 1

2
c = 1,

c2 − 4ab

2c− a− 4b
< 1) or (|1

4
a+ b|+ 1

2
c < 1,

c2 − 4ab

2c− a− 4b
= 1).

We will derive a contradiction. Let

|1
4
a+ b|+ 1

2
c = 1,

c2 − 4ab

2c− a− 4b
< 1.

Suppose that c = a. Then

1

4
a+ b < 0 and P = ax2 + (

1

4
a− 1)y2 + axy for 0 < a < 1.

We claim that such P is not extreme. Indeed, let n ∈ N be such that

0 < a− 1

n
< a+

1

n
< 1, −1 <

1

4
(a− 1

n
)− 1 <

1

4
(a+

1

n
)− 1 < 0.

Let

Q1(x, y) = (a+
1

n
)x2 + (

1

4
(a+

1

n
)− 1)y2 + (a+

1

n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (

1

4
(a− 1

n
)− 1)y2 + (a− 1

n
)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Hence, c > a. Note that

|1
4
a+ b| > 0.
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Indeed, if |14a+ b| = 0, then

c2 − 4ab

2c− a− 4b
= 1,

which we assumed did not hold. Note that

c > 0 and a > 0.

If a = 0, then

P = by2 + 2(1 + b)xy for − 1 < b < 0.

We claim that such P is not extreme. Indeed, let n ∈ N be such that

−1 < b− 1

n
< b+

1

n
< 0, 0 < 2(1 + b− 1

n
) < 2(1 + b+

1

n
) < 2.

Let

Q1(x, y) = (b+
1

n
)y2 + 2(1 + b+

1

n
)xy

and

Q2(x, y) = (b− 1

n
)y2 + 2(1 + b− 1

n
)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction.
First, suppose that

1

4
a+ b < 0.

Let n ∈ N be such that

1

4
a+ b+

5

4n
< 0, 0 < a− 1

n
< a+

1

n
< 1, a+

1

n
< c− 5

2n
,

−1 < b− 1

n
< b+

1

n
< 1, a− 1

n
> 4(b+

1

n
),

(c± 5
2n)

2 − 4(a± 1
n)(b± 1

n)

2(c± 5
2n)− (a± 1

n)− 4(b± 1
n)

< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

n
)y2 + (c+

5

2n
)xy
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and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

n
)y2 + (c− 5

2n
)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Next, suppose that

1

4
a+ b > 0.

Let n ∈ N be such that

1

4
a+ b− 5

4n
> 0, 0 < a− 1

n
< a+

1

n
< 1, a+

1

n
< c− 5

2n
,

−1 < b− 1

n
< b+

1

n
< 1, a− 1

n
> 4(b+

1

n
),

(c∓ 5
2n)

2 − 4(a± 1
n)(b± 1

n)

2(c± 5
2n)− (a± 1

n)− 4(b± 1
n)

< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

n
)y2 + (c− 5

2n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

n
)y2 + (c+

5

2n
)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction.
Let us show next that we can not have

|1
4
a+ b|+ 1

2
c < 1,

c2 − 4ab

2c− a− 4b
= 1.

Note that in that case, we have

c > a > 0.

Indeed, if c = a, then a = 1, which is impossible and if a = 0, then

2 > c = 1 +
�
1 + 4|b| ≥ 2,

which is also impossible. Let � > 0 be such that

0 < a− � < a+ � < 1,−1 < b− 1− 4b

4(1− a)
� < b+

1− 4b

4(1− a)
� < 1,
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a+ � < c− (
1− 4b

1− c
)� < c+ (

1− 4b

1− c
)� < 2, 4(b+

1− 4b

4(1− a)
�) < a− �,

|1
4
(a± �) + (b± 1− 4b

4(1− a)
�)|+ 1

2
(c± (

1− 4b

1− c
)�) < 1.

Let

Q1(x, y) = (a+ �)x2 + (b+
1− 4b

4(1− a)
�)y2 + (c+ (

1− 4b

1− c
)�)xy

and

Q2(x, y) = (a− �)x2 + (b− 1− 4b

4(1− a)
�)y2 + (c− (

1− 4b

1− c
)�)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Therefore, our claim that

|1
4
a+ b|+ 1

2
c =

c2 − 4ab

2c− a− 4b
= 1

is proved.
If 1

4a+ b ≥ 0, then

c = 2− a and b =
a

4
≥ 0,

which show that

0 = a = b, c = 2.

Claim: 2xy ∈ extBP(2R2

h( 12 )
)

Let

Q1(x, y) = �x2 + δy2 + 2xy

and

Q2(x, y) = −�x2 − δy2 + 2xy

be such that �Qj� = 1 for all j = 1, 2 and for some � ≥ 0 and δ ∈ R. Note
that

1 = �Q1� ≥ |Q1(1, 0)| = �.

Since

1 = max{�Q1�, �Q2�} ≥ max{|Q1(
1

2
, 1)|, |Q2(

1

2
, 1)|} = |1

4
�+ δ|+ 1,
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which follows that δ = −1
4�. Again, by Theorem 2.1 (case 2),

1 = �Q1� ≥ 4 + �2

4
,

hence, � = 0 = δ.
If 1

4a+ b < 0, by a calculation,

b =
a+ 4

√
1− a

4
− 1 and c = a+ 2

√
1− a for 0 < a < 1.

Hence,

P = ax2 + (
a+ 4

√
1− a

4
− 1)y2 + (a+ 2

√
1− a)xy for 0 < a < 1.

Claim: P = ax2+(a+4
√
1−a

4 −1)y2+(a+2
√
1− a)xy ∈ extBP(2R2

h( 12 )
) for

0 < a < 1 Let

b =
a+ 4

√
1− a

4
− 1, c = a+ 2

√
1− a for 0 < a < 1,

and

Q1(x, y) = (a+ �)x2 + (b+ δ)y2 + (c+ γ)xy,

Q2(x, y) = (a− �)x2 + (b− δ)y2 + (c− γ)xy

be such that �Qj� = 1 for all j = 1, 2 and for some �, δ, γ ∈ R. Without loss
of generality, we may assume that γ ≥ 0. Note that

4b < 0 < a < 1 ≤ c.

By Remark,
γ ≤ 2− c.

Hence
c− γ > 0.

Since

�(1
2
,−1)�h( 1

2
) = �( c− 4b

2c− a− 4b
,

2c− 2a

2c− a− 4b
)�h( 1

2
) = 1,

we have

|Qj(
1

2
,−1)| ≤ 1, |Qj(

c− 4b

2c− a− 4b
,

2c− 2a

2c− a− 4b
)| ≤ 1 for j = 1, 2.
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It follows that, for j = 1, 2,

1 ≥ |Qj(
1

2
,−1)|

= |1
4
(a± �) + (b± δ)− 1

2
(c± γ)|

= |(1
4
a+ b− 1

2
c)± (

�

4
+ δ − γ

2
)|

= |− 1± (
�

4
+ δ − γ

2
)|

= 1 + | �
4
+ δ − γ

2
|,

which shows that

γ = 2δ +
�

2
.

From the fact that

|Qj(
c− 4b

2c− a− 4b
,

2c− 2a

2c− a− 4b
)| ≤ 1 (j = 1, 2)

we deduce that

(†) δ =
4b− c

4(c− a)
� = (

1

4
− 1

2
√
1− a

)�, γ =
4b− a

2(c− a)
� = (1− 1√

1− a
)�.

Hence,

� ≤ 0, δ ≥ 0.

We claim that

c− γ > 1.

Otherwise. Then, c− γ ≤ 1. By (†), it follows that

c− γ ≤ 1

⇒ (a− 1)
√
1− a+ 2(1− a) ≤ (

√
1− a− 1)� = (1−

√
1− a)|�|

⇒ (�) |�| ≥ (1− a)(2−
√
1− a)

1−
√
1− a

.

Since

a+ |�| ≤ �Q2� = 1,

we have

|�| ≤ 1− a.
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By (�), we have

(1− a)(2−
√
1− a)

1−
√
1− a

≤ |�| ≤ 1− a,

which is impossible because

(1− a)(2−
√
1− a)

1−
√
1− a

> 1− a.

Therefore, we have c−γ > 1. We will show that � = 0. By Theorem 2.1 (case
2), we have

1 = �Q2� ≥
(c− 4b−a

2(c−a)�)
2 − 4(a− �)(b− 4b−c

4(c−a)�)

2(c− 4b−a
2(c−a)�)− (a− �)− 4(b− 4b−c

4(c−a)�)
,

=
(c2 − 4ab) + (γ2 − 2cγ + 4aδ + 4b�− 4�δ)

(2c− a− 4b) + (�+ 4δ − 2γ)

=
4 + (γ2 − 2cγ + 4aδ + 4b�− 4�δ)

4

= 1 +
1

4
(
−c(4b− a) + a(4b− c) + 4b(c− a)

c− a
�+

(2c− a− 4b)2

4(c− a)2
�2) (by †)

= 1 +
(2c− a− 4b)2

16(c− a)2
�2,

which shows that
(2c− a− 4b)2

(c− a)2
�2 ≤ 0,

hence, � = 0. Therefore, 0 = � = δ = γ. Thus we prove the claim.
Suppose that

0 < b < 1.

In this case we will derive a contradiction. First, assume that c < a. If a ≤
4b, then, by Theorem 2.1 (case 1),

1 = �P� = max{a, 1
4
a+ b+

1

2
c,
4ab− c2

4a
,

4ab− c2

2c+ a+ 4b
,

4ab− c2

−2c+ a+ 4b
}.

Suppose that

1 =
1

4
a+ b+

1

2
c.
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If c = 0, then

−c2 + 4ab

4a
< 1,

−c2 + 4ab

−2c+ a+ 4b
< 1,

−c2 + 4ab

2c+ a+ 4b
< 1.

Note that

0 < a < 1, 0 < b < 1.

We claim that such P is not extreme. Indeed, let n ∈ N be such that

0 < a− 1

n
< a+

1

n
< 1, 0 < b− 1

4n
< b+

1

4n
< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b− 1

4n
)y2

and

Q2(x, y) = (a− 1

n
)x2 + (b+

1

4n
)y2.

By Theorem 2.1 (case 1), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Hence

0 < c < 2.

Note that

−c2 + 4ab

4a
< 1,

4ab− c2

2c+ a+ 4b
< 1.

Since P is extreme, we claim that

1 =
−c2 + 4ab

−2c+ a+ 4b
.

Assume that

−c2 + 4ab

−2c+ a+ 4b
< 1.

Let n ∈ N be such that

0 < c− 1

n
< c+

1

n
< a− 1

n
< a+

1

n
< 1, 0 < b− 1

4n
< b+

1

4n
< 1,

4(a± 1
n)(b± 1

4n)− (c∓ 1
n)

2

4(a± 1
n)

< 1,
4(a± 1

n)(b± 1
4n)− (c∓ 1

n)
2

2(c∓ 1
n) + (a± 1

n) + 4(b± 1
4n)

< 1,
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4(a± 1
n)(b± 1

4n)− (c∓ 1
n)

2

−2(c∓ 1
n) + (a± 1

n) + 4(b± 1
4n)

< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

4n
)y2 + (c− 1

n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

4n
)y2 + (c+

1

n
)xy.

By Theorem 2.1 (case 1), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Hence,

c = 2− a > a,

which is a contradiction. Hence,

1

4
a+ b+

1

2
c < 1,

which is also contradiction because

1 = �P� = max{a, b, 1
4
a+ b+

1

2
c} < 1.

Therefore, we should have

a > 4b and a > 0.

By Theorem 2.1 (case 1),

1 = �P� = max{a, b, 1
4
a+ b+

1

2
c,
|c2 − 4ab|

4a
}.

Note that

|c2 − 4ab|
4a

< 1.

Indeed,

|c2 − 4ab|
4a

≤ c2 + 4ab

4a
<

2a2

4a
=

a

2
<

1

2
.

Hence,

1 =
1

4
a+ b+

1

2
c.
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In this case we claim that such P is not extreme. Indeed, let n ∈ N be such
that

0 < c− 1

n
< c+

1

n
< a− 1

n
< a+

1

n
< 1, 0 < b− 1

4n
< b+

1

4n
< 1,

|4(a± 1
n)(b± 1

4n)− (c∓ 1
n)

2|
4(a± 1

n)
< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

4n
)y2 + (c− 1

n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

4n
)y2 + (c+

1

n
)xy.

By Theorem 2.1 (case 1), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction. Therefore,

c ≥ a.

If a > 4b, by Theorem 2.1 (case 2),

1 = �P� = max{a, b, 1
4
a+ b+

1

2
c,

c2 − 4ab

2c− a− 4b
}.

Since P is extreme, by a similar argument to the one that allowed us to
prove the equation of (∗ ∗ ∗),

1 =
1

4
a+ b+

1

2
c =

c2 − 4ab

2c− a− 4b
.

By a calculation, we have

c = 2− 4b, a = 4b > 4b,

which contradicts the assumption that a > 4b. Hence,

a ≤ 4b.

By Theorem 2.1 (case 2),

1 = �P� = max{a, b, 1
4
a+ b+

1

2
c,

|c2 − 4ab|
2c+ a+ 4b

}.
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Note that
|c2 − 4ab|
2c+ a+ 4b

< 1.

Indeed,

|c2 − 4ab|
2c+ a+ 4b

≤ max{ c2

2c+ a+ 4b
,

4ab

2c+ a+ 4b
} < max{ c

2

2c
,
4ab

4b
}

= max{ c
2
, a} < 1.

Hence,

1 =
1

4
a+ b+

1

2
c.

In this case we claim that such P is not extreme. Indeed, let n ∈ N be such
that

0 < a− 1

n
< a+

1

n
< c− 1

n
< c+

1

n
< 2, 0 < b− 1

4n
< b+

1

4n
< 1,

4(a± 1
n)(b± 1

4n)− (c∓ 1
n)

2

2(c∓ 1
n) + (a± 1

n) + 4(b± 1
4n)

< 1.

Let

Q1(x, y) = (a+
1

n
)x2 + (b+

1

4n
)y2 + (c− 1

n
)xy

and

Q2(x, y) = (a− 1

n
)x2 + (b− 1

4n
)y2 + (c+

1

n
)xy.

By Theorem 2.1 (case 2), �Qj� = 1 and P = 1
2(Q1 +Q2), which implies that

P is not extreme, reaching thus a contradiction.Therefore, we complete the
proof. �

3. Applications to the polarization and unconditional constants of
P(2R2

h( 1
2
)
)

In [22], Kim explicitly calculate cpol(2 : d∗(1, w)2) and cunc(2 : d∗(1, w)2)
as follows:
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(a) If w ≤
√
2− 1, then cpol(2 : d∗(1, w)2) =

2(1+w2)
(1+w)2

;

(b) If w >
√
2− 1, then cpol(2 : d∗(1, w)2) = 1 + w2;

(c) If w ≤
√
2− 1, then cunc(2 : d∗(1, w)2) =

1+w2+
√

2(1+w4)

(1+w)2
;

(d) If w >
√
2− 1, then cunc(2 : d∗(1, w)2) =

1+w2+
√

(1+w2)2+4w2

2 .

Theorem 3.1. Let f ∈ P(2R2
h( 1

2
)
)∗ and set α = f(x2),β = f(y2), γ =

f(xy).

Then, �f� = max{|β|, |α+
1

4
β|+ |γ|,

|α+
3

4
β|, |α+ (

c2

4
− 1)β|+ c|γ| (0 ≤ c ≤ 1),

|aα+ (
a+ 4

√
1− a

4
− 1)β|+ (a+ 2

√
1− a)|γ| (0 ≤ a ≤ 1)}.

Proof. It follows from Theorem 2.2 and the fact that
�f� = supP∈extBP(2R2

h( 12 )
)

|f(P )|. �

Note that if �f� = 1, then |α| ≤ 1, |β| ≤ 1, |γ| ≤ 1
2 .

Theorem 3.2. ([24]) Let T ((x1, y1), (x2, y2)) := (a, b, c) ∈ Ls(
2R2

h( 1
2
)
).

Then, �T� = max{|a|, 1
2
|a|+ |c|, |1

4
a− b|, |1

4
a+ b|+ |c|}.

Theorem 3.3. (a) cpol(2 : R2
h( 1

2
)
) = 5

4 ;

(b) cunc(2 : R2
h( 1

2
)
) = 3

2 .

Proof. Let

P1(x, y) = y2,

P2(x, y) = x2 +
1

4
y2 ± xy,

P3(x, y) = x2 +
3

4
y2,

P4,c(x, y) = x2 + (
c2

4
− 1)y2 ± cxy (0 ≤ c ≤ 1),

P5,a(x, y) = ax2 + (
a+ 4

√
1− a

4
− 1)y2 ± (a+ 2

√
1− a)xy (0 ≤ a ≤ 1).
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(a): Note that

P̌1((x1, y1), (x2, y2)) = y1y2,

P̌2((x1, y1), (x2, y2)) = x1x2 +
1

4
y1y2 ±

1

2
(x1y2 + x2y1),

P̌3((x1, y1), (x2, y2)) = x1x2 +
3

4
y1y2,

P̌4,c((x1, y1), (x2, y2)) = x1x2 + (
c2

4
− 1)y1y2 ±

c

2
(x1y2 + x2y1) (0 ≤ c ≤ 1),

P̌5,a((x1, y1), (x2, y2)) = ax1x2 + (
a+ 4

√
1− a

4
− 1)y1y2

± a+ 2
√
1− a

2
(x1y2 + x2y1) (0 ≤ a ≤ 1).

Note that, by Theorem 3.2,

�P̌1� = 1 = �P̌2� = �P̌3�.

Claim: �P̌4,c� = 5−c2

4 for 0 ≤ c ≤ 1 and �P̌5,a� = a+
√
1− a for 0 ≤ a ≤ 1.

By Theorem 3.2,

�P̌4,c� = max{1, 1 + c

2
,
5− c2

4
,
−c2 + 2c+ 3

4
} =

5− c2

4
.

Hence,

sup
0≤c≤1

�P̌4,c� = sup
0≤c≤1

5− c2

4
=

5

4
.

By Theorem 3.2,

�P̌5,a� = max{a, a+
√
1− a, 1−

√
1− a, a− 1 + 2

√
1− a} = a+

√
1− a.

Hence,

sup
0≤a≤1

�P̌5,a� = sup
0≤a≤1

a+
√
1− a =

5

4
at a =

3

4
.

By the Krein-Milman Theorem,

cpol(2 : R2
h( 1

2
)
) = sup{�P̌1�, �P̌2�, �P̌3�, �P̌4,c�, �P̌5,a� : 0 ≤ c, a ≤ 1} =

5

4
.

(b): Note that

|P1|(x, y) = y2,
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|P2|(x, y) = x2 +
1

4
y2 + xy,

|P3|(x, y) = x2 +
3

4
y2,

|P4,c|(x, y) = x2 + (1− c2

4
)y2 + cxy (0 ≤ c ≤ 1),

|P5,a|(x, y) = ax2 + (1− a+ 4
√
1− a

4
)y2 + (a+ 2

√
1− a)xy (0 ≤ a ≤ 1).

Note that, by Theorem 2.1,

�|P1|� = 1 = �|P3|�, �|P2|� =
3

2
.

Claim: �|P4,c|� = max{−c2+2c+5
4 , 4−2c2

−c2−2c+5
} for 0 ≤ c ≤ 1 and �|P5,a|� =

1 + a
2 for 0 ≤ a ≤ 1.
By Theorem 2.1 (case 1),

�|P4,c|� = max{−c2 + 2c+ 5

4
,

4− 2c2

−c2 − 2c+ 5
} =

−c2 + 2c+ 5

4
for 0 ≤ c < 1.

For c = 1, by Theorem 2.1 (case 2),

�|P4,1|� =
3

2
.

Hence,

sup
0≤c≤1

�|P4,c|� = sup
0≤c≤1

−c2 + 2c+ 5

4
=

3

2
.

By Theorem 2.1,

�|P5,a|� = max{2 + a

2
,
a2 − 4a+ 2 + 4a

√
1− a

2 + a
} =

2 + a

2
for 0 ≤ a ≤ 1.

Hence,

sup
0≤a≤1

�|P5,a|� = sup
0≤c≤1

2 + a

2
=

3

2
.

By the Krein-Milman Theorem,

cunc(2 : R2
h( 1

2
)
) = sup{�|P1|�, �|P2|�, �|P3|�, �|P4,c|�, ��P5,a|� : 0 ≤ c, a ≤ 1}
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=
3

2
.

We complete the proof. �
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