EXTREME 2-HOMOGENEOUS POLYNOMIALS ON THE PLANE WITH A HEXAGONAL NORM AND APPLICATIONS TO THE POLARIZATION AND UNCONDITIONAL CONSTANTS

SUNG GUEN KIM*
Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
e-mail: sgk317@knu.ac.kr

Communicated by A. Kroó
(Received March 6, 2016; accepted March 20, 2017)

Abstract

We classify the extreme 2 -homogeneous polynomials on \mathbb{R}^{2} with the hexagonal norm of weight $\frac{1}{2}$. As applications, using its extreme points with the Krein-Milman Theorem, we explicitly compute the polarization and unconditional constants of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$.

1. Introduction

According to the Krein-Milman Theorem, every nonempty convex set in a Banach space is fully described by the set of its extreme points. We recall that if C is a convex set in a Banach space, a point $e \in C$ is said to be extreme if $x, y \in C$ and $e=\lambda x+(1-\lambda) y$ for some $0<\lambda<1$ implies that $x=y=e$. Note that if $e \in C$ such that $x, y \in C$ and $e=\frac{1}{2}(x+y)$ implies that $x=y=e$, then e is an extreme point of C. Indeed, without loss of generality, we may assume that $0<\lambda \leq \frac{1}{2}$. Then, $2 \lambda x+(1-2 \lambda) y \in C$ and it follows that $e=\lambda x+(1-\lambda) y=\frac{1}{2}[2 \lambda x+(1-2 \lambda) y]+\frac{1}{2} y$, which shows that

2010 Mathematics Subject Classification. Primary 46A22.
Key words and phrases. The Krein-Milman Theorem, extreme points, 2-homogeneous polynomials, the plane with a hexagonal norm, the polarization and unconditional constants.
${ }^{*}$ This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2057788).
$2 \lambda x+(1-2 \lambda) y=y$, hence, $x=y$. Let $n \in \mathbb{N}$. We write B_{E} for the closed unit ball of a real Banach space E. We denote by ext B_{E} the sets of all the extreme points of B_{E}. We denote by $\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n linear forms on E endowed with the norm $\|T\|=\sup _{\left\|x_{k}\right\|=1}\left|T\left(x_{1}, \cdots, x_{n}\right)\right|$. A n-linear form T is symmetric if $T\left(x_{1}, \ldots, x_{n}\right)=T\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for every permutation σ on $\{1,2, \ldots, n\}$. We denote by $\mathcal{L}_{s}\left({ }^{n} E\right)$ the Banach space of all continuous symmetric n-linear forms on E. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a unique $T \in \mathcal{L}_{s}\left({ }^{n} E\right)$ such that $P(x)=T(x, \cdots, x)$ for every $x \in E$. In this case it is convenient to write $T=\check{P}$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. It is well-known that

$$
\|P\| \leq\|\check{P}\| \leq \frac{n^{n}}{n!}\|P\| \quad\left(\forall P \in \mathcal{P}\left({ }^{n} E\right)\right)
$$

For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

In [33], the nth polarization constant of E is defined by

$$
c_{\mathrm{pol}}(n: E)=\inf \left\{M>0:\|\check{P}\| \leq M\|P\| \text { for every } P \in \mathcal{P}\left({ }^{n} E\right)\right\}
$$

Let X^{α} denote the monomial $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}$, where $X=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ with $\alpha_{k} \in \mathbb{N} \cup\{0\}, 1 \leq k \leq m$. If $P(X)=\sum_{|\alpha| \leq n} a_{\alpha} X^{\alpha}$ is a polynomial of degree n on \mathbb{R}^{m}, we define its modulus $|P|$ by $|P|(X)=$ $\sum_{|\alpha| \leq n}\left|a_{\alpha}\right| X^{\alpha}$. We define the nth unconditional constant of \mathbb{R}^{m} by

$$
c_{\mathrm{unc}}\left(n: \mathbb{R}^{m}\right)=\inf \left\{M>0:\|\mid P\|\|\leq M\| P \| \text { for every } P \in \mathcal{P}\left({ }^{n} \mathbb{R}^{m}\right\}\right.
$$

In 1998, Choi et al. [2, 3] characterized the extreme points of the unit ball of $\mathcal{P}\left(l_{1}^{2}\right)$ and $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$. In 2007, Kim [15] classified the exposed 2homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$. Kim [17, 19, 23] classified the extreme, exposed, smooth points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with an octagonal norm $\|(x, y)\|_{w}=\max \left\{|x|,|y|, \frac{|x|+|y|}{1+w}\right\}$. In 2009, Kim [16] classified the extreme, exposed, smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$. Kim $[18,20,21]$ also classified the extreme, exposed, smooth points of the unit balls of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$ and $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$. Gamez-Merino et al. [8] classified the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} \square\right)$ and, using its extreme points, compute the polarization and unconditional constants of $\mathcal{P}\left({ }^{2} \square\right)$, where \square is the unit square of vertices $(0,0),(0,1),(1,0),(1,1)$. We refer to $([1-6],[8-38])$ and references therein for some recent work about extremal properties of multilinear mappings and homogeneous polynomials
on some classical Banach spaces. By the Krein-Milman Theorem, a convex function (like a polynomial norm, for instance) defined on a convex set (like the unit ball of a finite dimensional polynomial space) attains its maximum at one extreme point of the convex set.

We will denote by $P(x, y)=a x^{2}+b y^{2}+c x y$ and $\check{P}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=$ $a x_{1} x_{2}+b y_{1} y_{2}+\frac{c}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)$ a 2 -homogeneous polynomial and its corresponding symmetric bilinear form on a real Banach space of dimension 2, respectively. Let $0<w<1$ be fixed. We denote by $\mathbb{R}_{h(w)}^{2}$ the space \mathbb{R}^{2} endowed with the hexagonal norm

$$
\|(x, y)\|_{h(w)}:=\max \{|y|,|x|+(1-w)|y|\}
$$

Very recently, Kim [24] classified the extreme and exposed points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$.

In this paper, we classify the extreme points of the unit ball of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$. As applications, using its extreme points and the results of [24] with the Krein-Milman Theorem, we explicitly compute $c_{\text {pol }}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\frac{5}{4}$ and $c_{\text {unc }}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\frac{3}{2}$.

2. The extreme points of the unit ball of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$

For $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, we present an explicit formula of $\|P\|$ in terms of its coefficients a, b, c as follows.

Theorem 2.1. Let $P(x, y)=a x^{2}+b y^{2}+c x y \in \mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$ with $a \geq 0, c \geq$ 0 and $a^{2}+b^{2}+c^{2} \neq 0$. Then:

Case 1: $c<a$
If $a \leq 4 b$, then

$$
\begin{aligned}
& \begin{array}{l}
\|P\|=\max \left\{a, b, \frac{1}{4} a+b+\frac{1}{2} c, \frac{4 a b-c^{2}}{4 a}, \frac{4 a b-c^{2}}{2 c+a+4 b}, \frac{4 a b-c^{2}}{-2 c+a+4 b}\right\} \\
\quad=\max \left\{a, \frac{1}{4} a+b+\frac{1}{2} c\right\} .
\end{array} \\
& \text { If } a>4 b, \text { then }\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{4 a}\right\} . \\
& \text { If } a \leq 4 b \text {, then }\|P\|=\max \left\{a, \frac{1}{4} a+b+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{2 c+a+4 b}\right\} \\
& \text { If } a>4 b, \text { then }\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{c^{2}-4 a b}{2 c-a-4 b}\right\}
\end{aligned}
$$

Proof. Note that

$$
\begin{aligned}
\|P\|= & \max \left\{\max _{0 \leq x \leq \frac{1}{2}}\left|a x^{2} \pm c x+b\right|, \max _{\frac{1}{2} \leq x \leq 1}\left|(a+4 b+2 c) x^{2}-2(4 b+c) x+4 b\right|,\right. \\
& \left.\max _{\frac{1}{2} \leq x \leq 1}\left|(a+4 b-2 c) x^{2}-2(4 b-c) x+4 b\right|\right\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& I_{1}:=\max _{0 \leq x \leq \frac{1}{2}}\left|a x^{2}+c x+b\right|, \\
& I_{2}:=\max _{0 \leq x \leq \frac{1}{2}}\left|a x^{2}-c x+b\right|, \\
& J_{1}:=\max _{\frac{1}{2} \leq x \leq 1}\left|(a+4 b+2 c) x^{2}-2(4 b+c) x+4 b\right|, \\
& J_{2}:=\max _{\frac{1}{2} \leq x \leq 1}\left|(a+4 b-2 c) x^{2}-2(4 b-c) x+4 b\right| .
\end{aligned}
$$

Obviously,

$$
I_{1}=\max \left\{|b|,\left|\frac{1}{4} a+b+\frac{1}{2} c\right|\right\} .
$$

Note that if $c<a$, then

$$
I_{2}=\max \left\{|b|,\left|\frac{1}{4} a+b-\frac{1}{2} c\right|, \frac{\left|c^{2}-4 a b\right|}{4|a|}\right\}
$$

and if $c \geq a$, then

$$
I_{2}=\max \left\{|b|,\left|\frac{1}{4} a+b-\frac{1}{2} c\right|\right\} .
$$

Let's compute J_{1}. Note that

$$
\frac{1}{2} \leq \frac{c+4 b}{2 c+a+4 b} \leq 1 \text { if and only if } a \leq 4 b
$$

Hence, if $a \leq 4 b$, then

$$
J_{1}=\max \left\{|a|,\left|\frac{1}{4} a+b-\frac{1}{2} c\right|, \frac{\left|c^{2}-4 a b\right|}{|2 c+a+4 b|}\right\}
$$

and if $a>4 b$, then

$$
J_{1}=\max \left\{|a|,\left|\frac{1}{4} a+b-\frac{1}{2} c\right|\right\} .
$$

Let's compute J_{2}. Note that

$$
\begin{gathered}
\frac{1}{2} \leq \frac{c-4 b}{2 c-a-4 b} \leq 1 \text { if and only if }(4 b \leq a \leq c, 2 c-a-4 b \neq 0) \text { or } \\
(c \leq a \leq 4 b, 2 c-a-4 b \neq 0) .
\end{gathered}
$$

Hence, if ($4 b \leq a \leq c, 2 c-a-4 b \neq 0$) or $(c \leq a \leq 4 b, 2 c-a-4 b \neq 0)$, then

$$
J_{2}=\max \left\{|a|,\left|\frac{1}{4} a+b+\frac{1}{2} c\right|, \frac{\left|c^{2}-4 a b\right|}{|2 c-a-4 b|}\right\}
$$

and otherwise,

$$
J_{2}=\max \left\{|a|,\left|\frac{1}{4} a+b+\frac{1}{2} c\right|\right\} .
$$

Since $\|P\|=\max \left\{I_{1}, I_{2}, J_{1}, J_{2}\right\}$, it completes the proof.
Remark. Note that if $\|P\|=1$, then $|a| \leq 1,|b| \leq 1,|c| \leq 2$.
We are now in a position to prove the main result of this paper.

Theorem 2.2.

$$
\begin{aligned}
& \quad \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}=\left\{ \pm y^{2}, \pm\left(x^{2}+\frac{1}{4} y^{2} \pm x y\right), \pm\left(x^{2}+\frac{3}{4} y^{2}\right)\right. \\
& \quad \pm\left[x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2} \pm c x y\right](0 \leq c \leq 1) \\
& \left. \pm\left[a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2} \pm(a+2 \sqrt{1-a}) x y\right](0 \leq a \leq 1)\right\}
\end{aligned}
$$

Proof. Let $P(x, y)=a x^{2}+b y^{2}+c x y \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$ with $a \geq 0, c \geq 0$. Note that if $b=1$, then $a=c=0$. Indeed, since

$$
1=\|P\| \geq\left|P\left(\frac{1}{2}, 1\right)\right|=\frac{1}{4} a+1+\frac{1}{2} c
$$

we have $a=c=0$. Hence, if $b=1$, then $P=y^{2}$.
Claim: $y^{2} \in \operatorname{ext} B_{\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$.
Let

$$
Q_{1}(x, y)=\epsilon x^{2}+\gamma y^{2}+\delta x y
$$

and

$$
Q_{2}(x, y)=-\epsilon x^{2}+\gamma y^{2}-\delta x y
$$

be such that $\left\|Q_{j}\right\|=1$ and $y^{2}=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$ for all $j=1,2$ and for some $\epsilon, \gamma, \delta \in \mathbb{R}$. Obviously, $\gamma=1$. Without loss of generality, we may assume that $\delta \geq 0$. If $\epsilon<0$, then

$$
1=\left\|Q_{2}\right\| \geq\left|Q_{2}\left(\frac{1}{2},-1\right)\right|=\frac{1}{4}|\epsilon|+1+\frac{1}{2} \delta>1
$$

which is a contradiction. Therefore, $\epsilon \geq 0$. Since

$$
1=\left\|Q_{1}\right\| \geq\left|Q_{1}\left(\frac{1}{2}, 1\right)\right|=\frac{1}{4} \epsilon+1+\frac{1}{2} \delta
$$

we have $\epsilon=0=\delta$. Therefore, $y^{2}=Q_{1}=Q_{2}$. Hence, $y^{2} \in \operatorname{ext} B_{\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$.
Suppose that $-1 \leq b<1$.
(Case 1): $a=1, b=-1$.
We claim that the only extreme point of the unit ball in this case is $P=x^{2}-y^{2}$. Since

$$
1=\|P\| \geq\left|P\left(\frac{1}{2},-1\right)\right|=\frac{3}{4}+\frac{1}{2} c
$$

we have $c \leq \frac{1}{2}$. By Theorem 2.1 (case 1),

$$
1=\|P\| \geq \frac{c^{2}+4}{4}
$$

which shows that $c=0$. Hence, if $a=1, b=-1$, then $P=x^{2}-y^{2}$.
Let

$$
Q_{1}(x, y)=x^{2}-y^{2}+\delta x y
$$

and

$$
Q_{2}(x, y)=x^{2}-y^{2}-\delta x y
$$

be such that $\left\|Q_{j}\right\|=1$ and $x^{2}-y^{2}=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$ for all $j=1,2$ and for some $\delta \geq 0$. Since

$$
1=\left\|Q_{1}\right\| \geq\left|Q_{1}\left(\frac{1}{2},-1\right)\right|=\frac{3}{4}+\frac{1}{2} \delta
$$

we have $\delta \leq \frac{1}{2}$. By Theorem 2.1 (case 1),

$$
1=\left\|Q_{1}\right\| \geq \frac{4+\delta^{2}}{4}
$$

which implies that $\delta=0$.
(Case 2): $a=1$ and $-1<b<1$.
We claim that the only extreme point of the unit ball in this case is

$$
\begin{aligned}
& P=x^{2}+\frac{1}{4} y^{2}+x y \text { or } P=x^{2}+\frac{3}{4} y^{2} \text { or } \\
& P=x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2}+c x y \text { for } 0<c \leq 1 .
\end{aligned}
$$

First, assume that $c>1$. If $1 \leq 4 b$, then

$$
1=\|P\| \geq\left|P\left(\frac{1}{2}, 1\right)\right|=\frac{1}{4}+b+\frac{1}{2} c>1
$$

which is impossible. Hence, $4 b<1$. By Theorem 2.1 (case 2),

$$
1=\|P\|=\max \left\{1,|b|,\left|\frac{1}{4}+b\right|+\frac{1}{2} c, \frac{c^{2}-4 b}{2 c-1-4 b}\right\}
$$

Since

$$
\frac{c^{2}-4 b}{2 c-1-4 b} \leq 1
$$

we have $c=1$, which is contradiction. Therefore, $c \leq 1$. If $1 \leq 4 b$, by Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{1, b, \frac{1}{4}+b+\frac{1}{2} c\right\} .
$$

Hence,

$$
\frac{1}{4} \leq b \leq \frac{3}{4}
$$

We will show that

$$
\frac{1}{4}+b+\frac{1}{2} c=1
$$

Assume that $\frac{1}{4}+b+\frac{1}{2} c<1$. If $\frac{1}{4}<b \leq \frac{3}{4}$, we define

$$
Q_{1}(x, y)=x^{2}+\left(b+\frac{1}{n}\right) y^{2}+\left(c-\frac{2}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(b-\frac{1}{n}\right) y^{2}+\left(c+\frac{2}{n}\right) x y,
$$

where

$$
0<b-\frac{1}{n}<b+\frac{1}{n}<1,0<c-\frac{2}{n}<c+\frac{2}{n}<1 \text { for some } n \in \mathbb{N}
$$

By Theorem 2.1, $\left\|Q_{j}\right\|=1$ for $j=1,2$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which shows that P is not extreme, reducing thus a contradiction. If $b=\frac{1}{4}$, we define

$$
Q_{1}(x, y)=x^{2}+b y^{2}+\left(c-\frac{2}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+b y^{2}+\left(c+\frac{2}{n}\right) x y
$$

where

$$
0<c-\frac{2}{n}<c+\frac{2}{n}<1, \frac{1}{4}+b+\frac{1}{2} c+\frac{1}{n}<1 \text { for some } n \in \mathbb{N} \text {. }
$$

By Theorem 2.1, $\left\|Q_{j}\right\|=1$ for $j=1,2$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which shows that P is not extreme, reducing thus a contradiction. Therefore,

$$
\frac{1}{4}+b+\frac{1}{2} c=1 .
$$

We have shown that

$$
P=x^{2}+b y^{2}+\left(\frac{3}{2}-2 b\right) x y \text { for } \frac{1}{4} \leq b \leq \frac{3}{4} .
$$

Note that $b=\frac{1}{4}$ or $\frac{3}{4}$. Indeed, suppose that

$$
\frac{1}{4}<b<\frac{3}{4}
$$

Let $\frac{1}{4}<b_{1}<b<b_{2}<\frac{3}{4}$ be such that $b=\frac{1}{2}\left(b_{1}+b_{2}\right)$. Let

$$
Q_{j}=x^{2}+b_{j} y^{2}+\left(\frac{3}{2}-2 b_{j}\right) x y \text { for } j=1,2 .
$$

By Theorem 2.1, $\left\|Q_{j}\right\|=1$ for $j=1,2$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which shows that P is not extreme. Hence, if $1 \leq 4 b$, then

$$
P=x^{2}+\frac{1}{4} y^{2}+x y \text { or } P=x^{2}+\frac{3}{4} y^{2}
$$

Claim: $x^{2}+\frac{1}{4} y^{2}+x y \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$.
Let

$$
Q_{1}(x, y)=x^{2}+\left(\frac{1}{4}+\epsilon\right) y^{2}+(1+\delta) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(\frac{1}{4}-\epsilon\right) y^{2}+(1-\delta) x y
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\epsilon, \delta \in \mathbb{R}$. Without loss of generality, we may assume that $\delta \geq 0$. If $\epsilon>0$, then

$$
1=\left\|Q_{1}\right\| \geq\left|Q_{1}\left(\frac{1}{2}, 1\right)\right|=\left|\frac{1}{4}+\left(\frac{1}{4}+\epsilon\right)+\frac{1}{2}(1+\delta)\right|>1
$$

which is a contradiction. Hence,

$$
\epsilon \leq 0
$$

By Theorem 2.1 (case 2),

$$
1=\left\|Q_{1}\right\| \geq \frac{4\left(\frac{1}{4}+\epsilon\right)-(1+\delta)^{2}}{1+4\left(\frac{1}{4}+\epsilon\right)-2(1+\delta)}
$$

which implies that $\delta=0$. Since

$$
1=\left\|Q_{2}\right\|=\left|Q_{2}\left(\frac{1}{2}, 1\right)\right| \geq\left|\frac{1}{4}+\left(\frac{1}{4}-\epsilon\right)+\frac{1}{2}\right|=1+|\epsilon|
$$

which implies $\epsilon=0$.
Claim: $x^{2}+\frac{3}{4} y^{2} \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$.
Let

$$
Q_{1}(x, y)=x^{2}+\left(\frac{3}{4}+\epsilon\right) y^{2}+\delta x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(\frac{3}{4}-\epsilon\right) y^{2}-\delta x y
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\epsilon, \delta \in \mathbb{R}$. Without loss of generality, we may assume that $\delta \geq 0$. Since $\left|Q_{j}\left(\frac{1}{2}, 1\right)\right| \leq 1$ for $j=1,2$, we have

$$
\epsilon=-\frac{1}{2} \delta
$$

Let

$$
Q_{3}(x, y)=x^{2}+\left(\frac{3}{4}+\frac{1}{2} \delta\right) y^{2}+\delta x y .
$$

It follows that

$$
\left\|Q_{3}\right\|=\sup _{\|(x, y)\|_{h\left(\frac{1}{2}\right)}=1}\left|Q_{3}(x,-y)\right|=\sup _{\|(x, y)\|_{h\left(\frac{1}{2}\right)}=1}\left|Q_{2}(x, y)\right|=\left\|Q_{2}\right\| .
$$

Since

$$
1=\left\|Q_{2}\right\|=\left\|Q_{3}\right\| \geq\left|Q_{3}\left(\frac{1}{2}, 1\right)\right|=1+\delta
$$

we have $\delta=0=\epsilon$.
Suppose that $4 b<1$. By Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{1,|b|,\left|\frac{1}{4}+b\right|+\frac{1}{2} c, \frac{\left|c^{2}-4 b\right|}{4}\right\} .
$$

Using the fact that P is extreme, we will show that

$$
c>0 \text { and } \frac{\left|c^{2}-4 b\right|}{4}=1
$$

Otherwise.

$$
c=0 \text { or } \frac{\left|c^{2}-4 b\right|}{4}<1 .
$$

If $c=0$ then

$$
P=x^{2}+b y^{2} \text { for }-1<b<\frac{1}{4},
$$

which is not extreme. That is a contradiction. Hence $c>0$. Assume that $\frac{\left|c^{2}-4 b\right|}{4}<1$. If $c=1$, then

$$
P=x^{2}+b y^{2}+x y \text { for }-\frac{3}{4}<b<\frac{1}{4}
$$

which is not extreme. That is a contradiction. Therefore,

$$
0<c<1 \text { and } \frac{1}{4}+b+\frac{1}{2} c<1 .
$$

Let $n \in \mathbb{N}$ such that

$$
b+\frac{1}{n}<\frac{1}{4}, 0<c-\frac{2}{n}<c+\frac{2}{n}<1, \frac{1}{4}+b+\frac{1}{2} c+\frac{1}{n}<1
$$

$$
\frac{\left|c^{2}-4 b+\frac{4}{n^{2}}(1 \pm 3 n)\right|}{4}<1
$$

Let

$$
Q_{1}(x, y)=x^{2}+\left(b+\frac{1}{n}\right) y^{2}+\left(c+\frac{2}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(b-\frac{1}{n}\right) y^{2}+\left(c-\frac{2}{n}\right) x y
$$

By Theorem 2.1 (case 1$),\left\|Q_{j}\right\|=1$ for $j=1,2$. Since $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right), P$ is not extreme, which is a contradiction. Hence,

$$
\frac{\left|c^{2}-4 b\right|}{4}=1
$$

Therefore, if $4 b<1$, then

$$
P=x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2}+c x y \text { for } 0<c \leq 1
$$

Claim: $x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2}+c x y \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$) for $0<c \leq 1$.
Let $0<c<1$ and let

$$
Q_{1}(x, y)=x^{2}+\left(\frac{c^{2}}{4}-1+\delta\right) y^{2}+(c+\gamma) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(\frac{c^{2}}{4}-1-\delta\right) y^{2}+(c-\gamma) x y
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\delta, \gamma \in \mathbb{R}$. Since

$$
\left|\frac{c^{2}}{4}-1 \pm \delta\right| \leq 1
$$

we have

$$
|\delta|<\frac{1}{4} \quad \text { and } \quad-1 \leq \frac{c^{2}}{4}-1-|\delta| \leq \frac{c^{2}}{4}-1+|\delta|<-\frac{1}{2}
$$

Without loss of generality, we may assume that $\gamma \geq 0$. We will show that

$$
c+\gamma<1
$$

Assume that $1 \leq c+\gamma \leq 2$. By Theorem 2.1 (case 2),

$$
1=\left\|Q_{1}\right\| \geq \frac{(c+\gamma)^{2}-4\left(\frac{c^{2}}{4}-1+\delta\right)}{2(c+\gamma)-1-4\left(\frac{c^{2}}{4}-1+\delta\right)}
$$

which implies that $c+\gamma=1$. Hence,

$$
Q_{1}(x, y)=x^{2}+\left(\frac{c^{2}}{4}-1+\delta\right) y^{2}+x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(\frac{c^{2}}{4}-1-\delta\right) y^{2}+(2 c-1) x y
$$

By Theorem 2.1 (case 1), it follows that, for $j=1,2$,

$$
\begin{aligned}
1 & =\left\|Q_{j}\right\| \geq\left|\frac{1}{4}+\left(\frac{c^{2}}{4}-1 \pm \delta\right)\right|+\frac{1}{2} \\
& =-\left(\frac{1}{4}+\left(\frac{c^{2}}{4}-1 \pm \delta\right)\right)+\frac{1}{2}
\end{aligned}
$$

which shows that

$$
\frac{3-c^{2}}{4} \pm \delta \leq \frac{1}{2}
$$

Hence,

$$
c^{2} \geq 1
$$

which is a contradiction because $0<c<1$. Therefore,

$$
c+\gamma<1
$$

By Theorem 2.1 (case 1),

$$
1=\left\|Q_{1}\right\| \geq \frac{4+2 c \gamma+\gamma^{2}-4 \delta}{4}
$$

which implies that
(*) $\quad 4+2 c \gamma+\gamma^{2}-4 \delta \leq 4$.
Since

$$
|c-\gamma| \leq c+\gamma<1
$$

by Theorem 2.1 (case 1),

$$
1=\left\|Q_{2}\right\|=\left\|x^{2}+\left(\frac{c^{2}}{4}-1-\delta\right) y^{2}+(c-\gamma) x y\right\| \geq \frac{4-2 c \gamma+\gamma^{2}+4 \delta}{4},
$$

which implies that

$$
(* *) \quad 4-2 c \gamma+\gamma^{2}+4 \delta \leq 4
$$

Adding $(*)$ and $(* *)$, we have $8+2 \gamma^{2} \leq 8$, hence, $\gamma=0$. By $(*)$ and $(* *)$, we have

$$
4-4 \delta \leq 4,4+4 \delta \leq 4
$$

so $\delta=0$. Therefore,

$$
x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2}+c x y \in \operatorname{ext} B_{\mathcal{P}\left(2^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)} \text { for } 0<c<1
$$

We will show that if $c=1$, then

$$
P=x^{2}-\frac{3}{4} y^{2}+x y
$$

is extreme. Let

$$
Q_{1}(x, y)=x^{2}+\left(-\frac{3}{4}+\epsilon\right) y^{2}+(1+\delta) x y
$$

and

$$
Q_{2}(x, y)=x^{2}+\left(-\frac{3}{4}-\epsilon\right) y^{2}+(1-\delta) x y
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\epsilon, \delta \in \mathbb{R}$. Since

$$
\left|-\frac{3}{4} \pm \epsilon\right| \leq 1
$$

we have

$$
|\epsilon| \leq \frac{1}{4}
$$

Hence,

$$
-1 \leq-\frac{3}{4}-|\epsilon| \leq-\frac{3}{4}+|\epsilon| \leq-\frac{1}{2}
$$

Without loss of generality, we may assume that $\delta \geq 0$. By Theorem 2.1 (case $2)$,

$$
1=\left\|Q_{1}\right\| \geq \frac{4+2 \delta-4 \epsilon+\delta^{2}}{4+2 \delta-4 \epsilon}
$$

which implies that $\delta=0$. Since, for $j=1,2$,

$$
1=\left\|Q_{j}\right\| \geq\left|\frac{1}{4}+\left(-\frac{3}{4} \pm \epsilon\right)\right|+\frac{1}{2}=1+|\epsilon|
$$

which shows that $\epsilon=0$. Hence,

$$
P=x^{2}-\frac{3}{4} y^{2}+x y \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}
$$

(Case 3): $0 \leq a<1$ and $b=-1$.
If $c \geq a$, then

$$
1=\|P\| \geq\left|\frac{1}{4} a-1\right|+\frac{1}{2} c
$$

which shows that

$$
c \leq \frac{1}{2} a
$$

Hence, $a=0=c$ and $P=-y^{2}$, which is extreme. Suppose that $c<a$. By Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{a, 1,\left|\frac{1}{4} a-1\right|+\frac{1}{2} c, \frac{c^{2}+4 a}{4 a}\right\}
$$

Hence

$$
\frac{c^{2}+4 a}{4 a} \leq 1
$$

which implies that $c=0$. Hence

$$
P=a x^{2}-y^{2} \text { for } 0<a<1
$$

which is a contradiction because P is extreme. Indeed, let $0<a_{1}<a<a_{2}<$ 1 be such that $a=\frac{1}{2}\left(a_{1}+a_{2}\right)$. Define

$$
Q_{j}(x, y)=a_{j} x^{2}-y^{2} \text { for } j=1,2
$$

Then $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme.
(Case 4): $0 \leq a<1$ and $-1<b<1$

If $-1<b \leq 0$, we claim that the only extreme point of the unit ball is

$$
P=2 x y
$$

Assume that $c<a$. By Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{c^{2}-4 a b}{4 a}\right\} .
$$

Since P is extreme, we claim that

$$
1=\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=\frac{c^{2}-4 a b}{4 a}
$$

Assume that

$$
\left(\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1, \frac{c^{2}-4 a b}{4 a}<1\right) \text { or } \quad\left(\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1, \frac{c^{2}-4 a b}{4 a}=1\right) .
$$

We will derive a contradiction. Let

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1, \frac{c^{2}-4 a b}{4 a}<1 .
$$

Note that

$$
0<c<1 \text { and } \frac{1}{4} a+b<0
$$

Let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& \frac{1}{4} a+b+\frac{5}{4 n}<0,0<c-\frac{5}{2 n}<c+\frac{5}{2 n}<a-\frac{1}{n}<a+\frac{1}{n}<1, \\
& -1<b-\frac{1}{n}<b+\frac{1}{n}<1, a-\frac{1}{n}>4\left(b+\frac{1}{n}\right) \\
& \frac{\left(c \pm \frac{5}{2 n}\right)^{2}-4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{n}\right)}{4\left(a \pm \frac{1}{n}\right)}<1
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{n}\right) y^{2}+\left(c+\frac{5}{2 n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{n}\right) y^{2}+\left(c-\frac{5}{2 n}\right) x y .
$$

By Theorem 2.1 (case 1), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction.

Let next

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1, \frac{c^{2}-4 a b}{4 a}=1
$$

Then $c>0$. Let $\epsilon>0$ be such that

$$
\begin{aligned}
& 0<a-\epsilon<a+\epsilon<1,-1<b-\left(\frac{1+b}{a}\right) \epsilon<b+\left(\frac{1+b}{a}\right) \epsilon<1 \\
& 0<c-\frac{4(1+b)}{c} \epsilon<c+\frac{4(1+b)}{c} \epsilon<a-\epsilon, 4\left(b+\left(\frac{1+b}{a}\right) \epsilon\right)<a-\epsilon \\
& \left\lvert\, \frac{1}{4}\left((a \pm \epsilon)+\left(b \pm\left(\frac{1+b}{a}\right) \epsilon\right) \left\lvert\,+\frac{1}{2}\left(c \pm \frac{4(1+b)}{c} \epsilon\right)<1\right.\right.\right.
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=(a+\epsilon) x^{2}+\left(b+\left(\frac{1+b}{a}\right) \epsilon\right) y^{2}+\left(c+\frac{4(1+b)}{c} \epsilon\right) x y
$$

and

$$
Q_{2}(x, y)=(a-\epsilon) x^{2}+\left(b-\left(\frac{1+b}{a}\right) \epsilon\right) y^{2}+\left(c-\frac{4(1+b)}{c} \epsilon\right) x y
$$

From the fact that

$$
\frac{c^{2}-4 a b}{4 a}=1
$$

we deduce that

$$
\begin{aligned}
& \frac{\left(c+\frac{4(1+b)}{c} \epsilon\right)^{2}-4(a+\epsilon)\left(b+\left(\frac{1+b}{a}\right) \epsilon\right)}{4(a+\epsilon)}=1 \\
& =\frac{\left(c-\frac{4(1+b)}{c} \epsilon\right)^{2}-4(a-\epsilon)\left(b-\left(\frac{1+b}{a}\right) \epsilon\right)}{4(a-\epsilon)}
\end{aligned}
$$

hence, by Theorem 2.1 (case 1), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Therefore, we should have

$$
1=\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=\frac{c^{2}-4 a b}{4 a}
$$

Hence, $\frac{1}{4} a+b<0$ and $c=a$, which is a contradiction. Therefore, we have

$$
c \geq a
$$

By Theorem 2.1 (case 2),

$$
1=\|P\|=\max \left\{a,|b|,\left|\frac{1}{4} a+b\right|+\frac{1}{2} c, \frac{c^{2}-4 a b}{2 c-a-4 b}\right\}
$$

Since P is extreme, we claim that

$$
(* * *) \quad 1=\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=\frac{c^{2}-4 a b}{2 c-a-4 b} .
$$

Assume that

$$
\left(\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1, \frac{c^{2}-4 a b}{2 c-a-4 b}<1\right) \text { or }\left(\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1, \frac{c^{2}-4 a b}{2 c-a-4 b}=1\right)
$$

We will derive a contradiction. Let

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=1, \frac{c^{2}-4 a b}{2 c-a-4 b}<1
$$

Suppose that $c=a$. Then

$$
\frac{1}{4} a+b<0 \text { and } P=a x^{2}+\left(\frac{1}{4} a-1\right) y^{2}+a x y \text { for } 0<a<1 .
$$

We claim that such P is not extreme. Indeed, let $n \in \mathbb{N}$ be such that

$$
0<a-\frac{1}{n}<a+\frac{1}{n}<1,-1<\frac{1}{4}\left(a-\frac{1}{n}\right)-1<\frac{1}{4}\left(a+\frac{1}{n}\right)-1<0 .
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(\frac{1}{4}\left(a+\frac{1}{n}\right)-1\right) y^{2}+\left(a+\frac{1}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(\frac{1}{4}\left(a-\frac{1}{n}\right)-1\right) y^{2}+\left(a-\frac{1}{n}\right) x y .
$$

By Theorem 2.1 (case 2$),\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Hence, $c>a$. Note that

$$
\left|\frac{1}{4} a+b\right|>0
$$

Indeed, if $\left|\frac{1}{4} a+b\right|=0$, then

$$
\frac{c^{2}-4 a b}{2 c-a-4 b}=1
$$

which we assumed did not hold. Note that

$$
c>0 \text { and } a>0
$$

If $a=0$, then

$$
P=b y^{2}+2(1+b) x y \text { for }-1<b<0
$$

We claim that such P is not extreme. Indeed, let $n \in \mathbb{N}$ be such that

$$
-1<b-\frac{1}{n}<b+\frac{1}{n}<0,0<2\left(1+b-\frac{1}{n}\right)<2\left(1+b+\frac{1}{n}\right)<2
$$

Let

$$
Q_{1}(x, y)=\left(b+\frac{1}{n}\right) y^{2}+2\left(1+b+\frac{1}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(b-\frac{1}{n}\right) y^{2}+2\left(1+b-\frac{1}{n}\right) x y
$$

By Theorem 2.1 (case 2), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction.

First, suppose that

$$
\frac{1}{4} a+b<0
$$

Let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& \frac{1}{4} a+b+\frac{5}{4 n}<0,0<a-\frac{1}{n}<a+\frac{1}{n}<1, a+\frac{1}{n}<c-\frac{5}{2 n} \\
& -1<b-\frac{1}{n}<b+\frac{1}{n}<1, a-\frac{1}{n}>4\left(b+\frac{1}{n}\right) \\
& \frac{\left(c \pm \frac{5}{2 n}\right)^{2}-4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{n}\right)}{2\left(c \pm \frac{5}{2 n}\right)-\left(a \pm \frac{1}{n}\right)-4\left(b \pm \frac{1}{n}\right)}<1
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{n}\right) y^{2}+\left(c+\frac{5}{2 n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{n}\right) y^{2}+\left(c-\frac{5}{2 n}\right) x y .
$$

By Theorem 2.1 (case 2), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Next, suppose that

$$
\frac{1}{4} a+b>0
$$

Let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& \frac{1}{4} a+b-\frac{5}{4 n}>0,0<a-\frac{1}{n}<a+\frac{1}{n}<1, a+\frac{1}{n}<c-\frac{5}{2 n} \\
& -1<b-\frac{1}{n}<b+\frac{1}{n}<1, a-\frac{1}{n}>4\left(b+\frac{1}{n}\right) \\
& \frac{\left(c \mp \frac{5}{2 n}\right)^{2}-4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{n}\right)}{2\left(c \pm \frac{5}{2 n}\right)-\left(a \pm \frac{1}{n}\right)-4\left(b \pm \frac{1}{n}\right)}<1 .
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{n}\right) y^{2}+\left(c-\frac{5}{2 n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{n}\right) y^{2}+\left(c+\frac{5}{2 n}\right) x y
$$

By Theorem 2.1 (case 2), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction.

Let us show next that we can not have

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c<1, \frac{c^{2}-4 a b}{2 c-a-4 b}=1
$$

Note that in that case, we have

$$
c>a>0 .
$$

Indeed, if $c=a$, then $a=1$, which is impossible and if $a=0$, then

$$
2>c=1+\sqrt{1+4|b|} \geq 2
$$

which is also impossible. Let $\epsilon>0$ be such that

$$
0<a-\epsilon<a+\epsilon<1,-1<b-\frac{1-4 b}{4(1-a)} \epsilon<b+\frac{1-4 b}{4(1-a)} \epsilon<1,
$$

$$
\begin{aligned}
& a+\epsilon<c-\left(\frac{1-4 b}{1-c}\right) \epsilon<c+\left(\frac{1-4 b}{1-c}\right) \epsilon<2,4\left(b+\frac{1-4 b}{4(1-a)} \epsilon\right)<a-\epsilon \\
& \left|\frac{1}{4}(a \pm \epsilon)+\left(b \pm \frac{1-4 b}{4(1-a)} \epsilon\right)\right|+\frac{1}{2}\left(c \pm\left(\frac{1-4 b}{1-c}\right) \epsilon\right)<1
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=(a+\epsilon) x^{2}+\left(b+\frac{1-4 b}{4(1-a)} \epsilon\right) y^{2}+\left(c+\left(\frac{1-4 b}{1-c}\right) \epsilon\right) x y
$$

and

$$
Q_{2}(x, y)=(a-\epsilon) x^{2}+\left(b-\frac{1-4 b}{4(1-a)} \epsilon\right) y^{2}+\left(c-\left(\frac{1-4 b}{1-c}\right) \epsilon\right) x y
$$

By Theorem 2.1 (case 2), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Therefore, our claim that

$$
\left|\frac{1}{4} a+b\right|+\frac{1}{2} c=\frac{c^{2}-4 a b}{2 c-a-4 b}=1
$$

is proved.
If $\frac{1}{4} a+b \geq 0$, then

$$
c=2-a \text { and } b=\frac{a}{4} \geq 0
$$

which show that

$$
0=a=b, c=2
$$

Claim: $2 x y \in \operatorname{ext} B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$
Let

$$
Q_{1}(x, y)=\epsilon x^{2}+\delta y^{2}+2 x y
$$

and

$$
Q_{2}(x, y)=-\epsilon x^{2}-\delta y^{2}+2 x y
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\epsilon \geq 0$ and $\delta \in \mathbb{R}$. Note that

$$
1=\left\|Q_{1}\right\| \geq\left|Q_{1}(1,0)\right|=\epsilon
$$

Since

$$
1=\max \left\{\left\|Q_{1}\right\|,\left\|Q_{2}\right\|\right\} \geq \max \left\{\left|Q_{1}\left(\frac{1}{2}, 1\right)\right|,\left|Q_{2}\left(\frac{1}{2}, 1\right)\right|\right\}=\left|\frac{1}{4} \epsilon+\delta\right|+1
$$

which follows that $\delta=-\frac{1}{4} \epsilon$. Again, by Theorem 2.1 (case 2),

$$
1=\left\|Q_{1}\right\| \geq \frac{4+\epsilon^{2}}{4}
$$

hence, $\epsilon=0=\delta$.
If $\frac{1}{4} a+b<0$, by a calculation,

$$
b=\frac{a+4 \sqrt{1-a}}{4}-1 \text { and } c=a+2 \sqrt{1-a} \text { for } 0<a<1
$$

Hence,

$$
P=a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2}+(a+2 \sqrt{1-a}) x y \text { for } 0<a<1
$$

Claim: $P=a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2}+(a+2 \sqrt{1-a}) x y \in \operatorname{ext} B_{\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}$ for $0<a<1$ Let

$$
b=\frac{a+4 \sqrt{1-a}}{4}-1, c=a+2 \sqrt{1-a} \text { for } 0<a<1
$$

and

$$
\begin{aligned}
& Q_{1}(x, y)=(a+\epsilon) x^{2}+(b+\delta) y^{2}+(c+\gamma) x y \\
& Q_{2}(x, y)=(a-\epsilon) x^{2}+(b-\delta) y^{2}+(c-\gamma) x y
\end{aligned}
$$

be such that $\left\|Q_{j}\right\|=1$ for all $j=1,2$ and for some $\epsilon, \delta, \gamma \in \mathbb{R}$. Without loss of generality, we may assume that $\gamma \geq 0$. Note that

$$
4 b<0<a<1 \leq c
$$

By Remark,

$$
\gamma \leq 2-c
$$

Hence

$$
c-\gamma>0
$$

Since

$$
\left\|\left(\frac{1}{2},-1\right)\right\|_{h\left(\frac{1}{2}\right)}=\left\|\left(\frac{c-4 b}{2 c-a-4 b}, \frac{2 c-2 a}{2 c-a-4 b}\right)\right\|_{h\left(\frac{1}{2}\right)}=1
$$

we have

$$
\left|Q_{j}\left(\frac{1}{2},-1\right)\right| \leq 1,\left|Q_{j}\left(\frac{c-4 b}{2 c-a-4 b}, \frac{2 c-2 a}{2 c-a-4 b}\right)\right| \leq 1 \text { for } j=1,2
$$

It follows that, for $j=1,2$,

$$
\begin{aligned}
1 & \geq\left|Q_{j}\left(\frac{1}{2},-1\right)\right| \\
& =\left|\frac{1}{4}(a \pm \epsilon)+(b \pm \delta)-\frac{1}{2}(c \pm \gamma)\right| \\
& =\left|\left(\frac{1}{4} a+b-\frac{1}{2} c\right) \pm\left(\frac{\epsilon}{4}+\delta-\frac{\gamma}{2}\right)\right| \\
& =\left|-1 \pm\left(\frac{\epsilon}{4}+\delta-\frac{\gamma}{2}\right)\right| \\
& =1+\left|\frac{\epsilon}{4}+\delta-\frac{\gamma}{2}\right|
\end{aligned}
$$

which shows that

$$
\gamma=2 \delta+\frac{\epsilon}{2}
$$

From the fact that

$$
\left|Q_{j}\left(\frac{c-4 b}{2 c-a-4 b}, \frac{2 c-2 a}{2 c-a-4 b}\right)\right| \leq 1 \quad(j=1,2)
$$

we deduce that
(†) $\delta=\frac{4 b-c}{4(c-a)} \epsilon=\left(\frac{1}{4}-\frac{1}{2 \sqrt{1-a}}\right) \epsilon, \gamma=\frac{4 b-a}{2(c-a)} \epsilon=\left(1-\frac{1}{\sqrt{1-a}}\right) \epsilon$.
Hence,

$$
\epsilon \leq 0, \delta \geq 0
$$

We claim that

$$
c-\gamma>1
$$

Otherwise. Then, $c-\gamma \leq 1$. By (\dagger), it follows that

$$
\begin{aligned}
& c-\gamma \leq 1 \\
\Rightarrow & (a-1) \sqrt{1-a}+2(1-a) \leq(\sqrt{1-a}-1) \epsilon=(1-\sqrt{1-a})|\epsilon| \\
\Rightarrow & (\sharp)|\epsilon| \geq \frac{(1-a)(2-\sqrt{1-a})}{1-\sqrt{1-a}} .
\end{aligned}
$$

Since

$$
a+|\epsilon| \leq\left\|Q_{2}\right\|=1
$$

we have

$$
|\epsilon| \leq 1-a
$$

By (\sharp), we have

$$
\frac{(1-a)(2-\sqrt{1-a})}{1-\sqrt{1-a}} \leq|\epsilon| \leq 1-a
$$

which is impossible because

$$
\frac{(1-a)(2-\sqrt{1-a})}{1-\sqrt{1-a}}>1-a
$$

Therefore, we have $c-\gamma>1$. We will show that $\epsilon=0$. By Theorem 2.1 (case 2), we have

$$
\begin{gathered}
1=\left\|Q_{2}\right\| \geq \frac{\left(c-\frac{4 b-a}{2(c-a)} \epsilon\right)^{2}-4(a-\epsilon)\left(b-\frac{4 b-c}{4(c-a)} \epsilon\right)}{2\left(c-\frac{4 b-a}{2(c-a)} \epsilon\right)-(a-\epsilon)-4\left(b-\frac{4 b-c}{4(c-a)} \epsilon\right)} \\
=\frac{\left(c^{2}-4 a b\right)+\left(\gamma^{2}-2 c \gamma+4 a \delta+4 b \epsilon-4 \epsilon \delta\right)}{(2 c-a-4 b)+(\epsilon+4 \delta-2 \gamma)} \\
=\frac{4+\left(\gamma^{2}-2 c \gamma+4 a \delta+4 b \epsilon-4 \epsilon \delta\right)}{4} \\
=1+\frac{1}{4}\left(\frac{-c(4 b-a)+a(4 b-c)+4 b(c-a)}{c-a} \epsilon+\frac{(2 c-a-4 b)^{2}}{4(c-a)^{2}} \epsilon^{2}\right)(\mathrm{by} \dagger) \\
=1+\frac{(2 c-a-4 b)^{2}}{16(c-a)^{2}} \epsilon^{2}
\end{gathered}
$$

which shows that

$$
\frac{(2 c-a-4 b)^{2}}{(c-a)^{2}} \epsilon^{2} \leq 0
$$

hence, $\epsilon=0$. Therefore, $0=\epsilon=\delta=\gamma$. Thus we prove the claim.
Suppose that

$$
0<b<1
$$

In this case we will derive a contradiction. First, assume that $c<a$. If $a \leq$ $4 b$, then, by Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{a, \frac{1}{4} a+b+\frac{1}{2} c, \frac{4 a b-c^{2}}{4 a}, \frac{4 a b-c^{2}}{2 c+a+4 b}, \frac{4 a b-c^{2}}{-2 c+a+4 b}\right\}
$$

Suppose that

$$
1=\frac{1}{4} a+b+\frac{1}{2} c
$$

If $c=0$, then

$$
\frac{-c^{2}+4 a b}{4 a}<1, \frac{-c^{2}+4 a b}{-2 c+a+4 b}<1, \frac{-c^{2}+4 a b}{2 c+a+4 b}<1
$$

Note that

$$
0<a<1,0<b<1
$$

We claim that such P is not extreme. Indeed, let $n \in \mathbb{N}$ be such that

$$
0<a-\frac{1}{n}<a+\frac{1}{n}<1,0<b-\frac{1}{4 n}<b+\frac{1}{4 n}<1
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{4 n}\right) y^{2}
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{4 n}\right) y^{2}
$$

By Theorem 2.1 (case 1$),\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Hence

$$
0<c<2
$$

Note that

$$
\frac{-c^{2}+4 a b}{4 a}<1, \frac{4 a b-c^{2}}{2 c+a+4 b}<1
$$

Since P is extreme, we claim that

$$
1=\frac{-c^{2}+4 a b}{-2 c+a+4 b}
$$

Assume that

$$
\frac{-c^{2}+4 a b}{-2 c+a+4 b}<1
$$

Let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& 0<c-\frac{1}{n}<c+\frac{1}{n}<a-\frac{1}{n}<a+\frac{1}{n}<1,0<b-\frac{1}{4 n}<b+\frac{1}{4 n}<1 \\
& \frac{4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{4 n}\right)-\left(c \mp \frac{1}{n}\right)^{2}}{4\left(a \pm \frac{1}{n}\right)}<1, \frac{4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{4 n}\right)-\left(c \mp \frac{1}{n}\right)^{2}}{2\left(c \mp \frac{1}{n}\right)+\left(a \pm \frac{1}{n}\right)+4\left(b \pm \frac{1}{4 n}\right)}<1
\end{aligned}
$$

$$
\frac{4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{4 n}\right)-\left(c \mp \frac{1}{n}\right)^{2}}{-2\left(c \mp \frac{1}{n}\right)+\left(a \pm \frac{1}{n}\right)+4\left(b \pm \frac{1}{4 n}\right)}<1
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{4 n}\right) y^{2}+\left(c-\frac{1}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{4 n}\right) y^{2}+\left(c+\frac{1}{n}\right) x y
$$

By Theorem 2.1 (case 1), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Hence,

$$
c=2-a>a
$$

which is a contradiction. Hence,

$$
\frac{1}{4} a+b+\frac{1}{2} c<1
$$

which is also contradiction because

$$
1=\|P\|=\max \left\{a, b, \frac{1}{4} a+b+\frac{1}{2} c\right\}<1
$$

Therefore, we should have

$$
a>4 b \text { and } a>0
$$

By Theorem 2.1 (case 1),

$$
1=\|P\|=\max \left\{a, b, \frac{1}{4} a+b+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{4 a}\right\} .
$$

Note that

$$
\frac{\left|c^{2}-4 a b\right|}{4 a}<1
$$

Indeed,

$$
\frac{\left|c^{2}-4 a b\right|}{4 a} \leq \frac{c^{2}+4 a b}{4 a}<\frac{2 a^{2}}{4 a}=\frac{a}{2}<\frac{1}{2}
$$

Hence,

$$
1=\frac{1}{4} a+b+\frac{1}{2} c
$$

In this case we claim that such P is not extreme. Indeed, let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& 0<c-\frac{1}{n}<c+\frac{1}{n}<a-\frac{1}{n}<a+\frac{1}{n}<1,0<b-\frac{1}{4 n}<b+\frac{1}{4 n}<1, \\
& \frac{\left|4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{4 n}\right)-\left(c \mp \frac{1}{n}\right)^{2}\right|}{4\left(a \pm \frac{1}{n}\right)}<1 .
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{4 n}\right) y^{2}+\left(c-\frac{1}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{4 n}\right) y^{2}+\left(c+\frac{1}{n}\right) x y .
$$

By Theorem 2.1 (case 1$),\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Therefore,

$$
c \geq a
$$

If $a>4 b$, by Theorem 2.1 (case 2),

$$
1=\|P\|=\max \left\{a, b, \frac{1}{4} a+b+\frac{1}{2} c, \frac{c^{2}-4 a b}{2 c-a-4 b}\right\} .
$$

Since P is extreme, by a similar argument to the one that allowed us to prove the equation of $(* * *)$,

$$
1=\frac{1}{4} a+b+\frac{1}{2} c=\frac{c^{2}-4 a b}{2 c-a-4 b} .
$$

By a calculation, we have

$$
c=2-4 b, a=4 b>4 b,
$$

which contradicts the assumption that $a>4 b$. Hence,

$$
a \leq 4 b .
$$

By Theorem 2.1 (case 2),

$$
1=\|P\|=\max \left\{a, b, \frac{1}{4} a+b+\frac{1}{2} c, \frac{\left|c^{2}-4 a b\right|}{2 c+a+4 b}\right\}
$$

Note that

$$
\frac{\left|c^{2}-4 a b\right|}{2 c+a+4 b}<1
$$

Indeed,

$$
\begin{aligned}
\frac{\left|c^{2}-4 a b\right|}{2 c+a+4 b} & \leq \max \left\{\frac{c^{2}}{2 c+a+4 b}, \frac{4 a b}{2 c+a+4 b}\right\}<\max \left\{\frac{c^{2}}{2 c}, \frac{4 a b}{4 b}\right\} \\
& =\max \left\{\frac{c}{2}, a\right\}<1 .
\end{aligned}
$$

Hence,

$$
1=\frac{1}{4} a+b+\frac{1}{2} c .
$$

In this case we claim that such P is not extreme. Indeed, let $n \in \mathbb{N}$ be such that

$$
\begin{aligned}
& 0<a-\frac{1}{n}<a+\frac{1}{n}<c-\frac{1}{n}<c+\frac{1}{n}<2,0<b-\frac{1}{4 n}<b+\frac{1}{4 n}<1, \\
& \frac{4\left(a \pm \frac{1}{n}\right)\left(b \pm \frac{1}{4 n}\right)-\left(c \mp \frac{1}{n}\right)^{2}}{2\left(c \mp \frac{1}{n}\right)+\left(a \pm \frac{1}{n}\right)+4\left(b \pm \frac{1}{4 n}\right)}<1 .
\end{aligned}
$$

Let

$$
Q_{1}(x, y)=\left(a+\frac{1}{n}\right) x^{2}+\left(b+\frac{1}{4 n}\right) y^{2}+\left(c-\frac{1}{n}\right) x y
$$

and

$$
Q_{2}(x, y)=\left(a-\frac{1}{n}\right) x^{2}+\left(b-\frac{1}{4 n}\right) y^{2}+\left(c+\frac{1}{n}\right) x y .
$$

By Theorem 2.1 (case 2), $\left\|Q_{j}\right\|=1$ and $P=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$, which implies that P is not extreme, reaching thus a contradiction. Therefore, we complete the proof.

3. Applications to the polarization and unconditional constants of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$

In [22], Kim explicitly calculate $c_{\text {pol }}\left(2: d_{*}(1, w)^{2}\right)$ and $c_{\text {unc }}\left(2: d_{*}(1, w)^{2}\right)$ as follows:
(a) If $w \leq \sqrt{2}-1$, then $c_{\text {pol }}\left(2: d_{*}(1, w)^{2}\right)=\frac{2\left(1+w^{2}\right)}{(1+w)^{2}}$;
(b) If $w>\sqrt{2}-1$, then $c_{\text {pol }}\left(2: d_{*}(1, w)^{2}\right)=1+w^{2}$;
(c) If $w \leq \sqrt{2}-1$, then $c_{\text {unc }}\left(2: d_{*}(1, w)^{2}\right)=\frac{1+w^{2}+\sqrt{2\left(1+w^{4}\right)}}{(1+w)^{2}}$;
(d) If $w>\sqrt{2}-1$, then $c_{\text {unc }}\left(2: d_{*}(1, w)^{2}\right)=\frac{1+w^{2}+\sqrt{\left(1+w^{2}\right)^{2}+4 w^{2}}}{2}$.

THEOREM 3.1. Let $f \in \mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)^{*}$ and set $\alpha=f\left(x^{2}\right), \beta=f\left(y^{2}\right), \gamma=$ $f(x y)$.

Then, $\|f\|=\max \left\{|\beta|,\left|\alpha+\frac{1}{4} \beta\right|+|\gamma|\right.$,

$$
\begin{aligned}
& \left|\alpha+\frac{3}{4} \beta\right|,\left|\alpha+\left(\frac{c^{2}}{4}-1\right) \beta\right|+c|\gamma|(0 \leq c \leq 1) \\
& \left.\left|a \alpha+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) \beta\right|+(a+2 \sqrt{1-a})|\gamma|(0 \leq a \leq 1)\right\}
\end{aligned}
$$

Proof. It follows from Theorem 2.2 and the fact that $\|f\|=\sup _{P \in \operatorname{ext}_{B_{\mathcal{P}\left(2 \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)}}|f(P)| .}$

Note that if $\|f\| \stackrel{h\left(\frac{1}{2}\right)}{=} 1$, then $|\alpha| \leq 1,|\beta| \leq 1,|\gamma| \leq \frac{1}{2}$.
THEOREM 3.2. ([24]) Let $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=(a, b, c) \in \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$.

$$
\text { Then, }\|T\|=\max \left\{|a|, \frac{1}{2}|a|+|c|,\left|\frac{1}{4} a-b\right|,\left|\frac{1}{4} a+b\right|+|c|\right\}
$$

Theorem 3.3. (a) $c_{p o l}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\frac{5}{4}$;
(b) $c_{u n c}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\frac{3}{2}$.

Proof. Let

$$
\begin{aligned}
P_{1}(x, y) & =y^{2} \\
P_{2}(x, y) & =x^{2}+\frac{1}{4} y^{2} \pm x y \\
P_{3}(x, y) & =x^{2}+\frac{3}{4} y^{2} \\
P_{4, c}(x, y) & =x^{2}+\left(\frac{c^{2}}{4}-1\right) y^{2} \pm c x y(0 \leq c \leq 1) \\
P_{5, a}(x, y) & =a x^{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y^{2} \pm(a+2 \sqrt{1-a}) x y(0 \leq a \leq 1)
\end{aligned}
$$

(a): Note that

$$
\begin{aligned}
\check{P}_{1}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =y_{1} y_{2}, \\
\check{P}_{2}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =x_{1} x_{2}+\frac{1}{4} y_{1} y_{2} \pm \frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right), \\
\check{P}_{3}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =x_{1} x_{2}+\frac{3}{4} y_{1} y_{2}, \\
\check{P}_{4, c}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =x_{1} x_{2}+\left(\frac{c^{2}}{4}-1\right) y_{1} y_{2} \pm \frac{c}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)(0 \leq c \leq 1), \\
\check{P}_{5, a}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) & =a x_{1} x_{2}+\left(\frac{a+4 \sqrt{1-a}}{4}-1\right) y_{1} y_{2} \\
& \pm \frac{a+2 \sqrt{1-a}}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right) \quad(0 \leq a \leq 1) .
\end{aligned}
$$

Note that, by Theorem 3.2,

$$
\left\|\check{P}_{1}\right\|=1=\left\|\check{P}_{2}\right\|=\left\|\check{P}_{3}\right\| .
$$

Claim: $\left\|\check{P}_{4, c}\right\|=\frac{5-c^{2}}{4}$ for $0 \leq c \leq 1$ and $\left\|\check{P}_{5, a}\right\|=a+\sqrt{1-a}$ for $0 \leq a \leq 1$.
By Theorem 3.2,

$$
\left\|\check{P}_{4, c}\right\|=\max \left\{1, \frac{1+c}{2}, \frac{5-c^{2}}{4}, \frac{-c^{2}+2 c+3}{4}\right\}=\frac{5-c^{2}}{4} .
$$

Hence,

$$
\sup _{0 \leq c \leq 1}\left\|\check{P}_{4, c}\right\|=\sup _{0 \leq c \leq 1} \frac{5-c^{2}}{4}=\frac{5}{4} .
$$

By Theorem 3.2,

$$
\left\|\check{S}_{5, a}\right\|=\max \{a, a+\sqrt{1-a}, 1-\sqrt{1-a}, a-1+2 \sqrt{1-a}\}=a+\sqrt{1-a} .
$$

Hence,

$$
\sup _{0 \leq a \leq 1}\left\|\check{P}_{5, a}\right\|=\sup _{0 \leq a \leq 1} a+\sqrt{1-a}=\frac{5}{4} \text { at } a=\frac{3}{4} .
$$

By the Krein-Milman Theorem,

$$
c_{\text {pol }}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\sup \left\{\left\|\check{P}_{1}\right\|,\left\|\check{P}_{2}\right\|,\left\|\check{P}_{3}\right\|,\left\|\check{P}_{4, c}\right\|,\left\|\check{P}_{5, a}\right\|: 0 \leq c, a \leq 1\right\}=\frac{5}{4} .
$$

(b): Note that

$$
\left|P_{1}\right|(x, y)=y^{2}
$$

$$
\begin{aligned}
\left|P_{2}\right|(x, y) & =x^{2}+\frac{1}{4} y^{2}+x y \\
\left|P_{3}\right|(x, y) & =x^{2}+\frac{3}{4} y^{2} \\
\left|P_{4, c}\right|(x, y) & =x^{2}+\left(1-\frac{c^{2}}{4}\right) y^{2}+c x y(0 \leq c \leq 1) \\
\left|P_{5, a}\right|(x, y) & =a x^{2}+\left(1-\frac{a+4 \sqrt{1-a}}{4}\right) y^{2}+(a+2 \sqrt{1-a}) x y(0 \leq a \leq 1)
\end{aligned}
$$

Note that, by Theorem 2.1,

$$
\left\|\left|P_{1}\right|\right\|=1=\left\|\left|P_{3}\right|\right\|,\left\|\left|P_{2}\right|\right\|=\frac{3}{2} .
$$

Claim: $\left\|\left|P_{4, c}\right|\right\|=\max \left\{\frac{-c^{2}+2 c+5}{4}, \frac{4-2 c^{2}}{-c^{2}-2 c+5}\right\}$ for $0 \leq c \leq 1$ and $\left\|\left|P_{5, a}\right|\right\|=$ $1+\frac{a}{2}$ for $0 \leq a \leq 1$.

By Theorem 2.1 (case 1),

$$
\left\|\left|P_{4, c}\right|\right\|=\max \left\{\frac{-c^{2}+2 c+5}{4}, \frac{4-2 c^{2}}{-c^{2}-2 c+5}\right\}=\frac{-c^{2}+2 c+5}{4} \text { for } 0 \leq c<1
$$

For $c=1$, by Theorem 2.1 (case 2),

$$
\left\|\left|P_{4,1}\right|\right\|=\frac{3}{2}
$$

Hence,

$$
\sup _{0 \leq c \leq 1}\left\|\left|P_{4, c}\right|\right\|=\sup _{0 \leq c \leq 1} \frac{-c^{2}+2 c+5}{4}=\frac{3}{2}
$$

By Theorem 2.1,

$$
\left\|\left|P_{5, a}\right|\right\|=\max \left\{\frac{2+a}{2}, \frac{a^{2}-4 a+2+4 a \sqrt{1-a}}{2+a}\right\}=\frac{2+a}{2} \text { for } 0 \leq a \leq 1
$$

Hence,

$$
\sup _{0 \leq a \leq 1}\left\|\mid P_{5, a}\right\| \|=\sup _{0 \leq c \leq 1} \frac{2+a}{2}=\frac{3}{2}
$$

By the Krein-Milman Theorem,

$$
c_{\text {unc }}\left(2: \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)=\sup \left\{\left\|\left|P_{1}\right|\right\|,\left\|\left|P_{2}\| \|,\left\|\left|P_{3}\right|\right\|,\left\|\left|\left|P_{4, c}\right|\|,\|\left\|P_{5, a} \mid\right\|: 0 \leq c, a \leq 1\right\}\right.\right.\right.\right.
$$

$$
=\frac{3}{2} .
$$

We complete the proof.

REFERENCES

[1] Aron, R.M. and Klimek, M., Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76 (2001), 73-80.
[2] Choi, Y.S., Ki, H. and Kim, S.G., Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl. 228 (1998), 467-482.
[3] Choi, Y.S. and Kim, S.G., The unit ball of $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$, Arch. Math. (Basel) 71 (1998), 472-480.
[4] Choi, Y.S. and Kim, S.G., Extreme polynomials on c_{0}, Indian J. Pure Appl. Math., 29 (1998), 983-989.
[5] Choi, Y.S. and Kim, S.G., Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math., 36 (1999), 26-33.
[6] Choi, Y.S. and Kim, S.G., Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)$ ($p=$ $1,2, \infty)$, Indian J. Pure Appl. Math., 35 (2004), 37-41.
[7] Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
[8] Gamez-Merino, J.L., Munoz-Fernandez, G.A., Sanchez, V.M. and SeoaneSepulveda, J.B., Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal., 340 (2013), no. 1, 125-142.
[9] Grecu, B.C., Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl., 246 (2000), 217-229.
[10] Grecu, B.C., Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math., (Basel) 76 (2001), no. 6, 445-454.
[11] Grecu, B.C., Geometry of 2-homogeneous polynomials on l_{p} spaces, $1<p<\infty$, J. Math. Anal. Appl., 273 (2002), 262-282.
[12] Grecu, B.C., Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math., 25 (2002), no. 4, 421-435.
[13] Grecu, B.C., Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces J. Math. Anal. Appl., 293 (2004), 578-588.
[14] Grecu, B.C., G.A. Munoz-Fernandez, and J.B. Seoane-Sepulveda, The unit ball of the complex $P\left({ }^{3} H\right)$, Math. Z., 263 (2009), 775-785.
[15] Kim, S.G., Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, Math. Proc. Royal Irish Acad., 107 (2007), 123-129.
[16] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math., 24 (2009), 17-29.
[17] KIm, S.G., The unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. Royal Irish Acad., 111 (2) (2011), 79-94.
[18] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., 53 (2013), 295306.
[19] Kim, S.G., Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. Royal Irish Acad., 113A (1) (2013), 45-58.
[20] Kim, S.G., Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., 53 (2013), 625-638.
[21] Kim, S.G., Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., 54 (2014), 341-347.
[22] Kim, S.G., Polarization and unconditional constants of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Commun. Korean Math. Soc., 29 (2014), 421-428.
[23] Kim, S.G., Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13 (2016), 2827-2839.
[24] Kim, S.G., Extremal problems for $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Kyungpook Math. J., 57 (2) (2017), 223-232.
[25] Kim, S.G. and Lee, S.H., Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131 (2003), 449-453.
[26] Kim, S.G., Exposed 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.
[27] Kim, S.G., Smooth 2-homogeneous polynomials on the plane with a hexagonal norm, Preprint.
[28] Kim, S.G., The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, Comment. Math. Prace Mat., 57 (2017), 1-7.
[29] Kim, S.G., The unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Bull. Korean Math. Soc., 54 (2) (2017), 417-428.
[30] Konheim, A.G. and Rivlin, T.J., Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505-507.
[31] Milev, L. and Naidenov, N., Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulg. Sci., 61 (2008), 1393-1400.
[32] Milev, L. and Naidenov, N., Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl., 405 (2013), 631-641.
[33] Munoz-Fernandez, G.A., Pellegrino, D., Seoane-Sepulveda, J.B. and WeBER, A., Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal., 21 (2014), no. 3, 745-764.
[34] Munoz-Fernandez, G.A., Revesz, S. and Seoane-Sepulveda, J.B, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105 (2009), 147-160.
[35] Munoz-Fernandez, G.A. and Seoane-Sepulveda, J.B, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340 (2008), 1069-1087.
[36] Neuwirth, S., The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104 (2008), 371-396.
[37] Revesz, S. and Sarantopoulos, Y., Plank problems, polarization and Chebyshev constants, J. Korean Math. Soc., 41 (2004), 157-174.
[38] Ryan, R.A. and Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221 (1998), 698-711.

