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Abstract

We classify the extreme 2-homogeneous polynomials on R? with the hexagonal norm
of weight % As applications, using its extreme points with the Krein-Milman Theorem,

we explicitly compute the polarization and unconditional constants of P(zRi( 1 >).

1. Introduction

According to the Krein-Milman Theorem, every nonempty convex set in
a Banach space is fully described by the set of its extreme points. We re-
call that if C' is a convex set in a Banach space, a point e € C' is said to be

extreme if x,y € C and e = Ax + (1 — A\)y for some 0 < A\ < 1 implies that

x =y = e. Note that if e € C such that z,y € C' and e = %(m + y) implies

that © = y = e, then e is an extreme point of C. Indeed, without loss of gen-
erality, we may assume that 0 < A < % Then, 2 Az + (1 —2\)y € C and it

follows that e = Az + (1 — A)y = 5[2Az + (1 — 2A\)y] + 3y, which shows that
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2X x4+ (1—2X\)y = y, hence, z = y. Let n € N. We write Bp, for the closed unit
ball of a real Banach space E£. We denote by ext Br the sets of all the extreme
points of Bg. We denote by £("E) the Banach space of all continuous n-
linear forms on E endowed with the norm [|T'[| = sup, =1 [T'(@1, -+, 2n)l-
A n-linear form T is symmetric if T'(x1,...,25) = T(Tg1), - - - s To(n)) for ev-
ery permutation o on {1,2,...,n}. We denote by Ls("E) the Banach space
of all continuous symmetric n-linear forms on £. A mapping P: E — Ris a
continuous n-homogeneous polynomial if there exists a unique 7' € L ("E)
such that P(x) = T(z,--- ,x) for every x € E. In this case it is convenient
to write T = P. We denote by P("FE) the Banach space of all continu-
ous n-homogeneous polynomials from E into R endowed with the norm
| P|| = supjg=1 [P(z)|. It is well-known that

. n" "
1Pl < 1Pl < —~IIPl (VP € P(UE)).

For more details about the theory of multilinear mappings and polynomials
on a Banach space, we refer to [7].
In [33], the nth polarization constant of E is defined by

Cpol(n : E) =inf{M > 0: ||P|| < M||P|| for every P € P("E)}.
Let X denote the monomial 7" - - - z&, where X = (z1,...,2,) € R™ and

a=(o1,...,0) With ay e NU{0}, 1 <k <m. If P(X) =},<, aaX” is

a polynomial of degree n on R™, we define its modulus |P| by |P|(X) =
2 laj<n [aa| X . We define the nth unconditional constant of R™ by

cunc(n : R™) =inf{M > 0 : ||| P|| < M]||P|| for every P € P("R™}.

In 1998, Choi et al. ?’ 3] characterized the extreme points of the unit
ball of P(%1?) and P(%3). In 2007, Kim [15] classified the exposed 2-

homogeneous polynomials on P(Qlf,) (1 <p<oo). Kim [17, 19, 23] classified
the extreme, exposed, smooth points of the unit ball of P(2d,(1,w)?), where

d«(1,w)? = R? with an octagonal norm ||(x, )|, = max{|z|, |y, %} In

2009, Kim [16] classified the extreme, exposed, smooth points of the unit ball
of L£s(31%). Kim [18, 20, 21] also classified the extreme, exposed, smooth
points of the unit balls of £4(2d,(1,w)?) and £(%d.(1,w)?). Gamez-Merino
et al. [8] classified the extreme points of the unit ball of P(?(J) and, using
its extreme points, compute the polarization and unconditional constants of
P(20), where [J is the unit square of vertices (0,0), (0, 1), (1,0),(1,1). We
refer to ([1-6], [8-38]) and references therein for some recent work about
extremal properties of multilinear mappings and homogeneous polynomials
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on some classical Banach spaces. By the Krein-Milman Theorem, a convex
function (like a polynomial norm, for instance) defined on a convex set (like
the unit ball of a finite dimensional polynomial space) attains its maximum
at one extreme point of the convex set.

We will denote by P(z,y) = ax?® + by? + cxy and P((x1,1), (72,v2)) =
axrixs + by1ys + %(:clyg + x9y1) a 2-homogeneous polynomial and its corre-
sponding symmetric bilinear form on a real Banach space of dimension 2,
respectively. Let 0 < w < 1 be fixed. We denote by Ri(w) the space R?

endowed with the hexagonal norm
1z Y lInw) = max{[yl, x| + (1 —w)lyl}.

Very recently, Kim [24] classified the extreme and exposed points of the unit
212
ball of L4( Rh(w)).
In this paper, we classify the extreme points of the unit ball of P(zRi (L )).
2
As applications, using its extreme points and the results of [24] with the
2:R 5

=2 and

Krein-Milman Theorem, we explicitly compute ¢ (L )) =7
2

cunc (2 : R}QL 3

pol

@) =2

2. The extreme points of the unit ball of P(QRZ(l))
2

For P(z,y) = az? + by? + cxy € 73(2IR,21 )), we present an explicit for-

(3

mula of || P]| in terms of its coefficients a, b, ¢ as follows.
THEOREM 2.1. Let P(z,y) = ax? +by? +cxy € P(zRi

0 and a® + b% + c® # 0. Then:
Case 1: ¢ < a
If a < 4b, then

(1)) witha > 0,¢c >
2

1 4dab—c  4dab— 2 dab — 2
—c
27 da 2c4+a+4b’ —2c+a+4b

}

1
| P|| = max{a,b, 1° +b+

1 1
= max{a, 7° +b+ QC}

If a > 4b, then HP” = max{a7 ‘b‘, ‘%a-i- b‘ + %C, ICQZ;Mb'}-
Case 2: ¢ > a

2
e

If a > 4b, then ||P|| = max{a, |b], | a + b| + ¢, o).
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PROOF. Note that

| P —max{ max \ax + cx + b, max |(a + 4b + 2¢)z* — 2(4b + ¢)x + 4b],

<zx<s 5 <z<l1
max |(a + 4b — 2¢)z? — 2(4b — ¢)x + 4b|}.
l<z<a
Let
I := max laz? 4 cx + b|,
0<m<7
I := max lax? — cx +b|,
O<z<—
Ji = max |(a + 4b + 2¢)z? — 2(4b + c)x + 4b],
—<z<1
Jp := max |(a + 4b — 2¢)z* — 2(4b — c)x + 4b|.
7<x<1
Obviously,

1 1
I = max{|b|, ]Za +b+ §c|}
Note that if ¢ < a, then

— 4ab|

c
I, = max{\bH a—l—b—f l, ’ 1a] —}

and if ¢ > a, then
1 1
Iy = max{|b|, ]Za +b— §c|}
Let’s compute J;. Note that

1 c+ 4b
S < T < qifand only if a < 4b.
2= 2etatap > Hanconyna

Hence, if a < 4b, then

1 | — 4ab|
J Jatb— e, o
1 = max{|al, | a+ cl, 2t at |

}

and if a > 4b, then

1 1
J1 = max{]al, \Za +b— §c|}
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Let’s compute J5. Note that

1< 26‘3_;4_1’% <1 ifand only if (4b<a <c¢,2c—a—4b#0) or
(c<a<4b,2c—a—4b#0).

Hence, if (4b<a <c¢,2c—a—4b#0) or (¢ < a <4b,2c —a —4b # 0), then

|2 — 4ab|

1 1
J2 = maX{‘a|, ’1@ +b+ §C|, m}

and otherwise,
1 1
Jo = max{|a|,|-a + b+ —cl|}.
4 2
Since ||P|| = max{I1, I, Ji, J2}, it completes the proof. O

REMARK. Note that if |P|| = 1, then |a| < 1,|b] < 1,|c| < 2.
We are now in a position to prove the main result of this paper.

THEOREM 2.2.
extBpepz | ) = {£y% £(2® + y? £ ay), £(@? + 1),
2

ta2 4 (G - Dy +eay] (0< e <),
+lax? + (HIZT 1)2 £ (a4 2T — a)zy] (0<a < 1)}

PROOF. Let P(x,y) = ax? + by? + cxy € extBpegz | with a > 0,¢ > 0.
h(3%)
Note that if b = 1, then a = ¢ = 0. Indeed, since

1 1 1
1=||P| >|P(%,1)| =~ 14 -
1Pl 2 1P(5,1)] = qa+1+ e,

we have a = ¢ = 0. Hence, if b = 1, then P = ¢°.
Claim: 72 € extBpog2 .
h(%)
Let
Q1(x,y) = ex® + vy + dzy
and

Q2(z,y) = —ex® +vy* — dzy
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be such that |Q;] =1 and y? = 1(Q1 + Q2) for all j =1,2 and for some
€,7,0 € R. Obviously, v = 1. Without loss of generality, we may assume that
0 >0.If e <0, then

1 1 1
1= > -, —1)|=- 1+=6>1
1Qall 2 Q2 1)l = glel +1+ 36> 1,
which is a contradiction. Therefore, e > 0. Since

1 1 1
1= > |01(G, 1) = et 1428
Q1] = |Q1(25 ) 46+ + 50,

we have € = 0 = §. Therefore, 3?2 = Q1 = Q2. Hence, y? € extBp 2p2 L
(%)
Suppose that —1 < b < 1.
(Case 1): a=1,b=—1.
We claim that the only extreme point of the unit ball in this case is
P = 22 — 2. Since

1 3
1= IPI 2 PG, -1l =5 +

we have ¢ < % By Theorem 2.1 (case 1),

214
1= P>

which shows that ¢ = 0. Hence, if a = 1,b = —1, then P = 22 — ¢/%.
Let

Q1(z,y) =2 — y* + dzy
and
Q2(z,y) = 2* — y* — dzy

be such that [|Q;]| = 1 and 22 — y? = $(Q1 + Q2) for all j = 1,2 and for some
6 > 0. Since

0,

N | =

1 3
1=[Q1 > \Q1(57—1)| =1t

we have § < % By Theorem 2.1 (case 1),

4+ 62
4 )

1= @l =

which implies that § = 0.
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(Case 2): a=1and -1 <b< 1.
We claim that the only extreme point of the unit ball in this case is

1 3
P:m2+1y2+xy orP:x2+Zy2 or

2
P:m2+(%—1)y2+cxyfor0<c§1.

First, assume that ¢ > 1. If 1 < 4b, then

1 1 1

which is impossible. Hence, 4b < 1. By Theorem 2.1 (case 2),

1 1 2—4b

Since
2 —4b
-7 <
2c—1—4b —

we have ¢ = 1, which is contradiction. Therefore, ¢ < 1. If 1 < 4b, by Theo-
rem 2.1 (case 1),

L

1 1
1 =||P|| = max{1,b, 1 +b+ 50}

Hence,

IN
o
IN

| =
o

We will show that
1
4
Assume that % +b+ %c <1.1If % <b< %, we define

1

_ .2 1.2 2
Qi(z,y) == +(b+n)y + (c n)wy

and

Qafr,y) =% + (b= )P + (e - )ay,
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where

1 1 2 2
0<b——<b+—-<1,0<c——<c+—<1 for somen € N.
n n n n

By Theorem 2.1, ||Q,|| =1 for j =1,2 and P = 3(Q1 + Q2), which shows
that P is not extreme, reducing thus a contradiction. If b = i, we define

2
Qi(z,y) = 2> + by + (c — ~)zy

and
2 2 2
QQ(x7y) =T +by +(C+ ﬁ)xyv

where

2 2 1 1 1
O0<c——<c+—<1,-4+b+-c+ — <1 for somen cN.
n n 4 2 n

By Theorem 2.1, [|Q;]| =1 for j =1,2 and P = (Q1 + Q2), which shows
that P is not extreme, reducing thus a contradiction. Therefore,

L S
1 ¢ T &

We have shown that

1
P:x2+by2+(g—2b)xy forngg

B oo

Note that b = % or %. Indeed, suppose that

1 3
—-<b< -,
4< 4

Let + < by <b<by <32 be such that b= 1(by + by). Let

Qj =2® +bjy* + (; —2bj)xy for j=1,2.

By Theorem 2.1, [|Q;]| =1 for j =1,2 and P = (Q1 + Q2), which shows
that P is not extreme. Hence, if 1 < 4b, then

1 3
P:x2+1y2+xy or P:x2+1y2.
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Claim: 22 + 1¢y? + 2y € emth(zRi(%)).
Let
Quz,y) = 2" + (i + )y’ + (1+d)zy
and
Qalr.y) =2+ (7~ + (1= D)y

be such that ||Q;|| =1 for all j = 1,2 and for some €, € R. Without loss of
generality, we may assume that § > 0. If € > 0, then

1 1 1 1
1=|Q1] > |Q1(§,1)| = |1 + (1 +e€) + 5(1 +0)| > 1,

which is a contradiction. Hence,

By Theorem 2.1 (case 2),

) A1 +6) — (1+06)
L=l = T g —a ey

which implies that § = 0. Since

1 1 1 1
1= 1Q2ll = 1Qa(5 DI 2 |5 + (5 — ) + 5] = 1+1dl

which implies € = 0.
Claim: z? + %yg € extBpeg2 ).
h(3)
Let

3
Qi(z,y) =2+ (1 + €)y* + dzy

and

Qa(z,y) = 2° + (3 )y* — dxy

Z — €
be such that ||Q;]| = 1 for all j = 1,2 and for some ¢€,0 € R. Without loss of

generality, we may assume that ¢ > 0. Since \Qj(%, ] <1forj=1,2, we
have

1
€ =—=0.
2
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Let
2 3 . 1 9
Q3(z,y) = x° + (Z + 55)19 + dxy.
It follows that

Qs = sup  |@s(z,—y)[=  sup  [Qa(z,y)| = [|Q2]|.

Il(wvy)”h(%>:1 ”(mvy)Hh(%)zl

Since
1
L= 1@l = llQs]l > |Qs(5, DI =1 +9,

we have d =0 =e.
Suppose that 4b < 1. By Theorem 2.1 (case 1),

1 1 |c? —4b|
1 = ||P|| = max{L1,1b], |1 +b| + 26 T}.

Using the fact that P is extreme, we will show that

2 _
¢>0 and le.
4
Otherwise.
|2 — 4b|
=0 — < 1.
c or 1
If ¢ = 0 then
2 2 1
P ="+ by* for —1<b<1,

which is not extreme. That is a contradiction. Hence ¢ > 0. Assume that
2_
[ < 1. 1f ¢ = 1, then

3 1
P = 2% + by + xy for _Z<b<17

which is not extreme. That is a contradiction. Therefore,

1 1
0<ec<1and Z+b+§c<1.

Let n € N such that

1 1 2 2 1 1 1
b+—-—<-0<c——<c+—-<1,-+b+zc+ - <1,
n 4 n n 4 2 n
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|2 — 4b+ (1 + 3n)|
T <1

Let
1 2
Qi(z,y) =2+ (b+ 5)3/2 +(e+ ~)ay

and

2

Qalay) = 2% + (b= 1)y + (e = 2oy,

n
By Theorem 2.1 (case 1), ||Q;| =1 for j = 1,2. Since P = 3(Q1 + Q2), P is
not extreme, which is a contradiction. Hence,

c? —4b]

1.
4

Therefore, if 4b < 1, then

2

P:ac2—|—(%—1)y2+cxy for 0 <c<1.

Claim: z? + (% —1)y? +cxy € extBpegz | for 0 <e <1
h(g)
Let 0 < ¢ <1 and let
2

Qula,y) = + (7~ 1+0)y” + (e + )y

and

c2

Q2(z,y) =2° + (Z —1=8)y* + (c—7)zy

be such that ||Q;]| =1 for all j = 1,2 and for some d,y € R. Since

2

C

——1+6/ <1
’4 ’—7

we have

1 c? c? 1
- 1< ——=1- < — =1+ ——.
\5! < 1 and 1 1 1 \(5| 1 \(5| < B

Without loss of generality, we may assume that v > 0. We will show that

c+v <Ll
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Assume that 1 < ¢+ v < 2. By Theorem 2.1 (case 2),

(c+7)2—4(5 —1+4)
c2

(c+79)—1-4(F —1+90)

)

1=Q] >
il =

which implies that ¢+« = 1. Hence,

2

C
Q1(z,y) 25524‘(1 —14+8)y* +ay

and

02

Q2(1’,y) - 332 + (Z

By Theorem 2.1 (case 1), it follows that, for j = 1,2,

—1-0)y* + (2¢ — 1)zy.

1 2 1
1=0:l > 1=+ (=146 -
1Qs1 > 17+ (5 )+ 5

1 1
=—(- — =149 —
(GG —1£8)+5,
which shows that
3— 2 1
+5< =
4 -2
Hence,
0221

which is a contradiction because 0 < ¢ < 1. Therefore,
c+vy <1l
By Theorem 2.1 (case 1),

4420y +72— 40
4 b

1= @l =
which implies that
() 442y +2—45 < 4.

Since
=y <et+vy <1,
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by Theorem 2.1 (case 1),

c? 4 —2cy+2 446
=1l = [ + (5~ 1 -85 + (e~ ayl] > e
which implies that
(%) 4—2cy 42440 < 4.

Adding () and (), we have 8 + 272 < 8, hence, v = 0. By () and (**), we
have

4—40 <4, 4+46 <4,
so 0 = 0. Therefore,

2

c
2+ (= —1D)y* +cay € ext Bp (a2

4 Bl

) for 0<e< 1.
(3

We will show that if ¢ = 1, then
3
P =2 13/2 + zy

is extreme. Let
2 3 2
Qi(r,y) =2 + (_Z +e)y” + (1+d)ry

and
Qalir,y) =% + (= — Oy + (1 - d)ay

be such that ||Q;|| =1 for all j = 1,2 and for some €,é € R. Since
-2ds,

we have

Hence,
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Without loss of generality, we may assume that § > 0. By Theorem 2.1 (case
2),

4426 — de + 52
4420 —4e
which implies that 6 = 0. Since, for j =1, 2,

1= [Q1] >

1 3 1
1=Q,ll = |Z+(_Zi6)|+§ =1+ lel,
which shows that ¢ = 0. Hence,

3
P=a%— "9 € extB .
T 4y +xy € ex P(QRi(%))

(Case 3): 0<a<1andb=—1.
If ¢ > a, then

1 1
1= |1P| > 30—+ e,
which shows that

c < —a.

DO | =

Hence, a = 0 = ¢ and P = —y?, which is extreme. Suppose that ¢ < a. By
Theorem 2.1 (case 1),

1 1 ®+4a
1=|P| = 1,|-a—1 — .
IPl = maxfo, 1|z — 1]+ 5e, )
Hence
2
c —f—4a<17
4a

which implies that ¢ = 0. Hence
P=az?—y? for 0<a<l,

which is a contradiction because P is extreme. Indeed, let 0 < a; < a < ag <
1 be such that a = (a1 + az). Define

Qj(z,y) = aja® — y* for j=1,2.

Then ||Q;|| =1 and P = %(Ql + @Q2), which implies that P is not extreme.
(Case4): 0<a<land —-1<b<1
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If —1 < b <0, we claim that the only extreme point of the unit ball is
P = 2xy.

Assume that ¢ < a. By Theorem 2.1 (case 1),

1 1 ¢ —4ab
L= |P|| = max{a, b, | a+b] + 3¢, ———}.
Since P is extreme, we claim that
1_|1 +b\+1 _02—4ab
Iy 2T T 4a
Assume that
(Ratb+te=1 62_4ab<1) (Easb+2c<t ¢ = dab 1)
—a —c=1,— or (|-a —c - =1).
4 2 T 4da 4 2 " 4a

We will derive a contradiction. Let

c® — 4ab -
4a

|1 +b|+1 =1 1
4a 26— , .
Note that
1
0<ec<1 and Za+b<0.

Let n € N be such that

1 5 5 5 1 1
—a+b+—<00<c——<c+—<a——<a+-—<1,
4 4n 2n 2n n n

1

1 1 1
—l1<b——<b+—-<l,a——>4(b+—),
n n n n

(ct ) —4at )b+ 1)

< 1.
4(atl)

LQ[

and
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By Theorem 2.1 (case 1), [|Q;] = 1 and P = 3(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction.

Let next
1 1 ¢? — 4ab
- — 1, —=1.
]4a+b|+2c< ' 1a
Then ¢ > 0. Let € > 0 be such that
1+b 1+b
0<a—e<a—|—6<1,—1<b—(%)6<b—|—(%)6<1,
4(1 4(1 1
0<C—ME<C+ ( +b)e<a—e,4(b+( +b)6)<a—e,
c c a
1 1+b 1 4(1+0b)
\Z((aie)-l—(bj:(T)e)H—i(cj: . €) < 1L
Let
1+b 4(1+0b
Qi) = (at 2 + 4 (D2 4 oy Doy
and
140 41+
Qa(ay) = (0= 2>+ (b~ (Ve + (e~ D ey
From the fact that
2 _
c 4ab:1’
4a
we deduce that
(c+ 1002 —dat 0+ (B41)e)
4(a+e€) B
(=12 —d(a—)(b— (1))
4(a —¢) ’

hence, by Theorem 2.1 (case 1), [|Q;]| =1 and P = 1(Q1 + Q2), which im-
plies that P is not extreme, reaching thus a contradiction. Therefore, we
should have

1 2 — 4ab

1
1: — —C =
|4a+b|+2c ™

Hence, ia 4+ b < 0 and ¢ = a, which is a contradiction. Therefore, we have

c>a.
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By Theorem 2.1 (case 2),

1 1 c® — 4ab
Pl = ma{a, b, |7+ b+ e, 50—}
Since P is extreme, we claim that
1 c? — 4ab

1
1=|= bl +-c= ————.
(% % *) ]4a+ |+2c PP

Assume that

1 1 1 1
(]1a+b|+§c:1, <1) or(]1a+b|+§c<1,

2c —a — 4b 2 —a—4b
We will derive a contradiction. Let

2 — 4ab

— < 1.
20—a—4b<

1 1
|Za+b\+§c: 1,
Suppose that ¢ = a. Then

1 1
Za+b<0 and P:ax2+(1a—1)y2+aa?y for 0 <a<1.

We claim that such P is not extreme. Indeed, let n € N be such that

0< 1< +1<1 1<1( 1) 1<1(+1) 1<0
a——<a+— — —(a——)— —(a+—)— .
n n ’ 4 n 4 n

Let
Qi) = (0 + )+ ((a+ )~ Dy + (a + oy

and

Qafy) = (a— ) +(Gla— )~ Dy +(a— )y,

By Theorem 2.1 (case 2), ||Q;|| = 1 and P = $(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Hence, ¢ > a. Note that

1
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Indeed, if |1a + b| = 0, then

2 — 4ab B
2 —a—4b

L,
which we assumed did not hold. Note that
¢c>0 and a > 0.
If a = 0, then
P=by?+2(1+0bay for —1<b<D0.

We claim that such P is not extreme. Indeed, let n € N be such that
1 1 1 1
“1<b——<b+—-<0,0<2(1+b——)<2(1+b+—-)<2.
n n n n

Let
1 1
Qua,y) = (b+ )" +2(1+b+ )zy

and

1 1
Q2(z,y) = (b— )y* +2(1+b— —)ay.
n n
By Theorem 2.1 (case 2), [|Q;| = 1 and P = (Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction.
First, suppose that

1
- b < 0.
4a +
Let n € N be such that
1 5 1 1 1 5
-a+b+—<00<a——<a+—-—<l,a+—<c——,
4 4n n n n 2n

1 1 1 1
—1<b——<b+—-—<1l,a——>4(b+—),
n n n n
(ct2)?—4ax )b+ 1)

20ct2)—(at i)y -4+l <1

Let

Qulwy) = (a+ )2+ (b+ 202 + e+ o)y
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and
Qaly) = (= )P + (0= -

5
12 _ 0
n)y + (c Qn)wy-

By Theorem 2.1 (case 2), ||Q;|| = 1 and P = $(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Next, suppose that

1

Let n € N be such that

1 5 1 1 1 5
-a+b——>00<a——<a+—<l,a+—<c— —,
4 4n n n n 2n

1 1 1 1
—l<b——<b+—<la——>4(b+—),
n n n n

(cF55)° —dlat )0+ 7)

20+ L) —(a+ L) —4(b+ 1) <1

Let

Qilwy) = (a+ )2+ (b+ 2P + e~ ey

and

Qalwy) = (a— ) + (b= )P + (e + 5 -Jay.

By Theorem 2.1 (case 2), [|Q;|| = 1 and P = 1(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction.
Let us show next that we can not have

1 1 c® — 4ab
- bl + = 1, —— =1.
qattltge<lo——n
Note that in that case, we have
c>a>0.

Indeed, if ¢ = a, then a = 1, which is impossible and if a = 0, then

2>c=1++/1+4]b] > 2,

which is also impossible. Let € > 0 be such that

1—4b 1— 4b
0O<a—e< <l-l<b- 2 ecpy 2
a-e<ate<d T NI e S
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1—4b 1—4b 1—4b
1_c)e<c—|—(1_c)e< , (b+4(1_a)
1—4b 1 1—4b

—_ —(c=x 1.
o a?) 3t (G0 <

a+e<c—( €) < a—e,

1

Let

1—4b

me)y2 +(c+(

Qi(z,y) = (a +e)x® + (b +

and

o e (=7

Q2(,y) = (a — €)z” + (b~

By Theorem 2.1 (case 2), [|Q;|| = 1 and P = 1(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Therefore, our claim that

1 2 — 4ab

= — =1
2T 2% —a—4b

1

is proved.
If %a +b >0, then

c=2—a and b:%ZO,
which show that
0=a=0b,c=2.
Claim: 2zy € extBppeg2
h(3)
Let
Qi(z,y) = ex® + 0y* + 2xy
and

Q2(z,y) = —ex® — 5y + 2ay

be such that ||Q;]| =1 for all j =1,2 and for some € > 0 and J € R. Note
that

L= Q1] > |Q:(1,0)] = e

Since

1 1 1
1 =max{[|@1], [Q2[I} =2 max{|Q1(5, 1], 1Q2(5, DI} = | e + 0] + 1,
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which follows that § = —fe. Again, by Theorem 2.1 (case 2),

4+ ¢2
4 )

L= Qufl =

hence, e =0 = .
If %a + b < 0, by a calculation,

44/1 —
bz%—land c=a+2v1l—afor0<a<l.
Hence,
41 —
P:ax2+(¥—1)y2+(a—|—2\/1—a)my for 0 <a<1.

Claim: P = ax®+ (% VIZd _1)92 4 (a+2y1—a)zy € extBp(gz | for
h(3)
0 <a<1Let

a+4v/1—a

b:
4

l,ce=a+2v1—a for 0<a<l,

and
Q1(z,y) = (a+ )x® + (b+ 6y + (c + )z,
Qa2(z,y) = (a — €)2” + (b= 0)y* + (c — 7)ay

be such that ||Q;]| =1 for all j = 1,2 and for some ¢,d,y € R. Without loss
of generality, we may assume that v > 0. Note that

b<i<a<l<e

By Remark,
vy<2—c
Hence
c—~v>0.
Since
1 c—4b 2c — 2a

G =Dl = oo 5 gy = 1

we have

c—4b 2¢c — 2a
2¢—a—4b’ 2¢c —a — 4b

1 .
|QJ’(§7_1)|§1?‘Qj( )|§1f01‘j:1,2.
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It follows that, for j = 1,2,

1
1> |QJ(§7 _1)|

- &(aie)ﬂbié)—%(civ)\

881

1 1 €

€ ¥
=|—1+(>+6-2
—1£(G+5-D)

€ ol
=14+|-4+d— =
which shows that
€
=20+ —.
Y +2
From the fact that
c—4b 2¢ — 2a
. < -
|Q](2c—a—4b’2c—a—4b)|_l =12
we deduce that
4b — ¢ 1 1 4b — a
(S: = (- — — =
(f) 4(0—&)6 (4 2 1—(1)67’y 2(c—a)
Hence,
€<0,0>0.
We claim that
c—vy>1.

Otherwise. Then, ¢ — v < 1. By ({), it follows that

c—vy<1

=(a—1)vVl—-a+21—-a)<(V1I—a—1)e=(1—+v1—a)l

(1-a)2-vIi-a)

= €|l >
(9 Il 2 =
Since
a+lel < [1Q:f =1,
we have

le] <1—a.

383
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By (#), we have
(1-a)(2—+v1—a)
1-V1-a

which is impossible because

(1-a)(2—+v1—na)
1—v1l—a

Therefore, we have ¢ —~ > 1. We will show that ¢ = 0. By Theorem 2.1 (case
2), we have

S‘G‘gl—a,

>1-—a.

_ 4b—a_ 2 _ o _ 4db—c
| [0l > (c 2(07(1)6) 4(a —€)(b 4(07(1)6)

2(c — Q%IC’:Z) €) —(a—e€)—4(b— %6)7
(c? — 4ab) + (42 — 2cy + 4ad + 4be — 4€))

(2¢ —a — 4b) + (e + 46 — 2v)

4+ (72 — 2cy + 4ad + 4be — 4e))

4
1, —c(4b—a) + a(4b — ¢) + 4b(c — a) (2c —a —4b)? ,
=14+= b,
+4( c—a 6+ 4(6—0,)2 6)()’1‘)
(2c —a —4b)% ,
— 1 _—
i 16(c — a)? <
which shows that
(2c —a — 4b)? ,
= 50

hence, € = 0. Therefore, 0 = ¢ = § = «. Thus we prove the claim.
Suppose that

0<b< 1.

In this case we will derive a contradiction. First, assume that ¢ < a. If a <
4b, then, by Theorem 2.1 (case 1),

1 1 4dab—c*  4dab— 2 dab — 2
1=||P| = - b+ — .
171 max{a,4a—|— +26’ 4a ’20+a+4b’—20+a+4b}

Suppose that

1 1
1:Za+b+§c
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If ¢ =0, then

—c? + 4ab —c? 4+ 4dab —c? 4+ 4dab
<1, <l,— < 1.
4a —2c+a-+4b 2¢+a+ 4b

Note that
0<a<l,0<b< 1.

We claim that such P is not extreme. Indeed, let n € N be such that

1 1 1 1
0<a——<a+—-—<1,0<b——<b+—<1.
n n 4n 4n

Let
1
Qilay) = (at+ a4 (b= 1

and

Qaly) = (o~ )a + (b+ 1)y

By Theorem 2.1 (case 1), [|Q;|| = 1 and P = 1(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Hence

0<e<2.

Note that
—c? +4ab - dab — 2 -
4q " 2c+a+4b

Since P is extreme, we claim that

1.

B —c2 + 4dad
 2c+a+t4b
Assume that
—c? + 4ab
— < 1.
—2c+a+4b
Let n € N be such that
1 1 1 1 1 1
0<c——<c+—<a——<a+—-—<1,0<b——<b+— <1,
n n n n 4n 4n
Yot HoE L)~ FLP | AatHotd) - (TP

<1, <1,
4la+d) 2eFH+(@xd)+40b+ L)
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daxt H)bE4) —(cF +)?
20F L)+ @ty +40b+ L)

L(it

and

Qalg) = (0= ) + (b= WP + (e oy,

By Theorem 2.1 (case 1), ||Q;|| = 1 and P = $(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Hence,

c=2—a>a,
which is a contradiction. Hence,

bt i<t
1 2

which is also contradiction because
1 1
1= ||P| = max{a,b, et b+ 50} < L
Therefore, we should have

a>4b and a > 0.

By Theorem 2.1 (case 1),

1 1 |c® — 4ab|
1=||P| = b, - b+ —¢c,—}.
1P| = max{a, b, 7a +b+ ¢, ———}
Note that
|2 — 4dab|
— <1
4a <
Indeed,
|2 —4ab| 2 +4ab  2a® a 1
< <—==-< -
4a 4a 4a 2 2
Hence,

1 1
1:Za+b+§c
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In this case we claim that such P is not extreme. Indeed, let n € N be such
that

1 1 1 1 1 1
0<c——<c+—<a——<a+—-—<1,0<b——<b+— <1,
n n n n

4n 4dn
[Ala£ )b E 5) = (€F )]
4(atd)

<1.

Let

Qulw9) = (a+ ) + (b WP + (= ey

and

1

Qaly) = (0 = )2+ (b= )+ (e + )y,

4n

By Theorem 2.1 (case 1), [|Q;|| = 1 and P = 1(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction. Therefore,

c>a.
If a > 4b, by Theorem 2.1 (case 2),

1 1 c? — 4ab
1=|P| = boa+b+—c, 1},
|Pl| = maxta,b, ga+b+ge o — =5}

Since P is extreme, by a similar argument to the one that allowed us to
prove the equation of (x * %),

1_1 —I—b—l—l B 2 — 4ab
1 2¢ T 2%e—a—4b

By a calculation, we have
c=2—4b,a = 4b > 4b,
which contradicts the assumption that a > 4b. Hence,
a < 4b.

By Theorem 2.1 (case 2),

1 1 2 — 4ab
L= ||| = max{a,b, 7a+b+ e ¢ — dabl

2 ’2c+a+4b}'
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Note that
|2 — 4ab|
— < 1.
2c+a+4b
Indeed,
|2 — 4ab| c? 4ab ¢ 4dab
- < , < —, —
2c+a+4b — aX{2c+a+4b 2c+a+4b} maX{Qc 4b }
= max{g,a} < 1.
Hence,
1 1
1= Ea + b + 56.

In this case we claim that such P is not extreme. Indeed, let n € N be such
that

1 1 1 1 1 1
0<a——<a+—<c——<c+—-<20<b——<b+— <1,

n n n n 4n 4n
Adlat2) b+ 4) = (cF )2

< 1.
20ecF D+ (et ) +40b+ L)

Let

Qulay) = (@t ) + (b W+ (e~ Dy

and

Qaf,y) = (a = )2+ (b= ) + (e )y,

By Theorem 2.1 (case 2), [|Q;|| = 1 and P = 1(Q1 + Q2), which implies that
P is not extreme, reaching thus a contradiction.Therefore, we complete the
proof. O

3. Applications to the polarization and unconditional constants of
P(QRi(l))
2

In [22], Kim explicitly calculate cpor(2 : di(1,w)?) and cyne(2 : di(1,w)?)
as follows:
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9 1+w?+4/2(14w?)

w2
a) If w < /2 —1, then cp01(2 dy(1,w)?) = %;
b) If w > V2 — 1, thencpol 2:d(1,w)?) =1+ w?;
(

w)
1,11}) (1+w)2 ’

)
) If w > /2 — 1, then cunc(2 : do(1,w)?) = Lrulty/(rw?)? dw?

(

( (

(c) If w < /2 — 1, then cune(2 : d.
(d 5

THEOREM 3.1. Let f € P(zRi(l))* and set o = f(z?),8 = f(y?),y =
2
f(zy).

1
Then, || f|| = max{|B], |+ 7 8] + 11,

3 2
o+ 28l o+ (5 = DBl + ekl (0 <e <),

a+4v1—a
4

Jac + ( — D[+ (a+2vI=a)ly[ (0 <a<D)}.

Proor. It follows from Theorem 2.2 and the fact that
I = sprectn ) 0

Note that if [|f|| = 1, then |o| < 1,]8] < 1, || < 3.

THEOREM 3.2. (/24]) Let T((x1,y1), (x2,y2)) = (a,b,c) € ['8(2RZ(;))'

1
—a+b| +|c|}.

1 1
Then; ”TH = max{\a|, 5’0" + ’C|7 ’Za - b|’ |4

THEOREM 3.3. (a) cpor(2 : R?

5.
wd)) = O

. _ 3
(D) cunc(2: Ri(%)) =3.
PRrRooOF. Let
Pl(‘r?y) = y27
1
Py(z,y) = 2* + ~y* Ly,

4
_ .2 3 2

2
Pyc(z,y) = 2+ (i — 1)y2 tery (0<ce<1),

4

44/1 —
Ps o(7,y) = ax® + (ﬁfa — Dyt +(a+2vV1—a)zy (0<a<1).
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(a): Note that

Pi((z1,11), (22, 92)) = 192,

1 1
Py((x1,91), (2, y2)) = 122 + —t1y2 £ = (x1y2 + T2y1),

4 2
. 3
P3((x1,y1), (x2,y2)) = z122 + 1YY
- C2 &
Pyc((x1,91), (x2,92)) = x122 + (Z — Dy £ 5(3?1342 +xoy1) (0< e <),
. a-+4v1—a
Ps o((z1,91), (x2,92)) = ax122 + (f — Dy1yeo

ia—|—2\/1—a
2

(x1y2 + x2y1) (0<a <),

Note that, by Theorem 3.2,

1Pl =1 =122 = [|P5].

Claim: ||Py.|| = 5102 for0<c<land ||Pss|=a+vVI—afor0<a<l.
By Theorem 3.2,

l4+¢ 5—c2 —2+2c+3 5— c?

||p476|| = ma‘X{17 2 9 4 9 4 } = 4
Hence,
. 5 — 2 5
sup |[Pscl| = sup = —.
0<e<1 0<e<1 4 4

By Theorem 3.2,
|Ps 0]l = max{a,a +v1—a,1-vV1—-a,a—1+2V/1—a}=a+V1—a.

Hence,

. 5 3
sup [|[Psull= sup a++vV1—a="at a="
0<a<1 0<a<1 4 4

By the Krein-Milman Theorem,

- - - - - )
cpol (2 : Ry 1)) = sup{ [ Prll, | Pall, [ Psll, [1Pacll, 1 Poall : 0 < e;a <1} = 2.

(3
(b): Note that

|P1|(33,y) = y27
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1
N%K%y)zw”+?f+x%

3
‘P3|($7y) = $2 + 1y27

2
|Pycl(z,y) =2® + (1 — Cz)y2 +cxy (0<c<1),

a-+4v1—a
4

|Psal(z,y) = az® + (1 — P+ (a+2vV1—a)ay (0<a<1).

Note that, by Theorem 2.1,

3
P =1 =Bl [Pl = 5-
Claim: |||Py||| = max{ 70222‘%5, _327_226;5} for 0 <c<1and ||Ps5,l] =
I1+§for0<a<l.
By Theorem 2.1 (case 1),
—c2+2+5 4 —2c? —c2+2+5
|| Pac||l = max{ 1 ’—02—20+5}: 1 for 0 <e< 1.
For ¢ = 1, by Theorem 2.1 (case 2),
3
Pyl = 5
Hence,
—2+2+5 3
sup [Pyl = sup ~SH2FE 3
<e<1 0<e<1

By Theorem 2.1,

2 2 _4a+ 2+ 4a/1— 2
1Pall = max 250 AT 2L m 2R ooy
a

Hence,

24+a 3
sup ||[P5qlll = sup =5
0<a<1 0<e<1 2 2

By the Krein-Milman Theorem,

cunc (2 . RQ

neyy) = SUPLIPLL 122 1S 1 Paelll M Psalll : 0 < ¢,a < 1}
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3
=5
We complete the proof. O
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